{"id":"https://openalex.org/W4311129667","doi":"https://doi.org/10.1007/s10618-022-00894-5","title":"Forecast evaluation for data scientists: common pitfalls and best practices","display_name":"Forecast evaluation for data scientists: common pitfalls and best practices","publication_year":2022,"publication_date":"2022-12-02","ids":{"openalex":"https://openalex.org/W4311129667","doi":"https://doi.org/10.1007/s10618-022-00894-5","pmid":"https://pubmed.ncbi.nlm.nih.gov/36504672"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00894-5","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00894-5.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00894-5.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5017345423","display_name":"Hansika Hewamalage","orcid":"https://orcid.org/0000-0001-6772-9996"},"institutions":[{"id":"https://openalex.org/I31746571","display_name":"UNSW Sydney","ror":"https://ror.org/03r8z3t63","country_code":"AU","type":"education","lineage":["https://openalex.org/I31746571"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Hansika Hewamalage","raw_affiliation_strings":["School of Computer Science & Engineering, University of New South Wales, Sydney, Australia"],"affiliations":[{"raw_affiliation_string":"School of Computer Science & Engineering, University of New South Wales, Sydney, Australia","institution_ids":["https://openalex.org/I31746571"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5062812734","display_name":"Klaus Ackermann","orcid":"https://orcid.org/0000-0001-7693-8538"},"institutions":[{"id":"https://openalex.org/I56590836","display_name":"Monash University","ror":"https://ror.org/02bfwt286","country_code":"AU","type":"education","lineage":["https://openalex.org/I56590836"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Klaus Ackermann","raw_affiliation_strings":["SoDa Labs and Department of Econometrics & Business Statistics, Monash Business School, Monash University, Melbourne, Australia"],"affiliations":[{"raw_affiliation_string":"SoDa Labs and Department of Econometrics & Business Statistics, Monash Business School, Monash University, Melbourne, Australia","institution_ids":["https://openalex.org/I56590836"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5010495833","display_name":"Christoph Bergmeir","orcid":"https://orcid.org/0000-0002-3665-9021"},"institutions":[{"id":"https://openalex.org/I56590836","display_name":"Monash University","ror":"https://ror.org/02bfwt286","country_code":"AU","type":"education","lineage":["https://openalex.org/I56590836"]}],"countries":["AU"],"is_corresponding":true,"raw_author_name":"Christoph Bergmeir","raw_affiliation_strings":["Department of Data Science and AI, Faculty of IT, Monash University, Melbourne, Australia"],"affiliations":[{"raw_affiliation_string":"Department of Data Science and AI, Faculty of IT, Monash University, Melbourne, Australia","institution_ids":["https://openalex.org/I56590836"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5010495833"],"corresponding_institution_ids":["https://openalex.org/I56590836"],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"fwci":13.101,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":62,"citation_normalized_percentile":{"value":0.999896,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":99,"max":100},"biblio":{"volume":"37","issue":"2","first_page":"788","last_page":"832"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11918","display_name":"Time Series Forecasting Methods","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T11918","display_name":"Time Series Forecasting Methods","score":0.9958,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Clustering of Time Series Data and Algorithms","score":0.9941,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11326","display_name":"Predicting Stock Market Trends and Movements","score":0.992,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/forecasting","display_name":"Forecasting","score":0.58948},{"id":"https://openalex.org/keywords/demand-forecasting","display_name":"Demand Forecasting","score":0.579328},{"id":"https://openalex.org/keywords/forecasting-models","display_name":"Forecasting Models","score":0.574285},{"id":"https://openalex.org/keywords/time-series-forecasting","display_name":"Time Series Forecasting","score":0.552063},{"id":"https://openalex.org/keywords/pattern-discovery","display_name":"Pattern Discovery","score":0.525638}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.56144446},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.48836514},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.45306286}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00894-5","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00894-5.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9718476","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/36504672","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00894-5","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00894-5.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Quality education","score":0.46,"id":"https://metadata.un.org/sdg/4"}],"grants":[{"funder":"https://openalex.org/F4320308737","funder_display_name":"Facebook","award_id":null},{"funder":"https://openalex.org/F4320320971","funder_display_name":"Monash University","award_id":null},{"funder":"https://openalex.org/F4320334704","funder_display_name":"Australian Research Council","award_id":"DE190100045"}],"datasets":[],"versions":[],"referenced_works_count":74,"referenced_works":["https://openalex.org/W1904826605","https://openalex.org/W1972978214","https://openalex.org/W2007703899","https://openalex.org/W2016210396","https://openalex.org/W2016944307","https://openalex.org/W2032927332","https://openalex.org/W2038849095","https://openalex.org/W2042506099","https://openalex.org/W2046109338","https://openalex.org/W2048665112","https://openalex.org/W2057030763","https://openalex.org/W2061554433","https://openalex.org/W2073256825","https://openalex.org/W2093230975","https://openalex.org/W2099302642","https://openalex.org/W2099419573","https://openalex.org/W2104641679","https://openalex.org/W2107548653","https://openalex.org/W2112081648","https://openalex.org/W2114733835","https://openalex.org/W2115012618","https://openalex.org/W2244109919","https://openalex.org/W2297152540","https://openalex.org/W2489782956","https://openalex.org/W2524046867","https://openalex.org/W2555077524","https://openalex.org/W2598379669","https://openalex.org/W2604847698","https://openalex.org/W2736287575","https://openalex.org/W2770188460","https://openalex.org/W2787894218","https://openalex.org/W2890096158","https://openalex.org/W2892035503","https://openalex.org/W2898777543","https://openalex.org/W2912806030","https://openalex.org/W2940914091","https://openalex.org/W2959101608","https://openalex.org/W2963507686","https://openalex.org/W2967988901","https://openalex.org/W2971724044","https://openalex.org/W2971900667","https://openalex.org/W2980994438","https://openalex.org/W3021257566","https://openalex.org/W3021318637","https://openalex.org/W3080253043","https://openalex.org/W3082548640","https://openalex.org/W3093451924","https://openalex.org/W3103529187","https://openalex.org/W3108342808","https://openalex.org/W3111435301","https://openalex.org/W3113621249","https://openalex.org/W3121979598","https://openalex.org/W3123777129","https://openalex.org/W3173518156","https://openalex.org/W3173993220","https://openalex.org/W3177318507","https://openalex.org/W3207999419","https://openalex.org/W3210546159","https://openalex.org/W3213539407","https://openalex.org/W4200311493","https://openalex.org/W4206173445","https://openalex.org/W4206189171","https://openalex.org/W4206809184","https://openalex.org/W4220961363","https://openalex.org/W4231546411","https://openalex.org/W4241727697","https://openalex.org/W4283446961","https://openalex.org/W4283721567","https://openalex.org/W4285604426","https://openalex.org/W4286268167","https://openalex.org/W4292671038","https://openalex.org/W4306876858","https://openalex.org/W4399572290","https://openalex.org/W4399577043"],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4391913857","https://openalex.org/W4391375266","https://openalex.org/W2899084033","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Abstract":[0],"Recent":[1],"trends":[2],"in":[3,9,33,87,103,112,119,194,199],"the":[4,19,38,48,57,69,71,79,128,140,148,156,171,174,207,234,238],"Machine":[5],"Learning":[6,12],"(ML)":[7],"and":[8,28,66,164,184,186,218,228],"particular":[10],"Deep":[11],"(DL)":[13],"domains":[14],"have":[15],"demonstrated":[16],"that":[17,90,108],"with":[18,44,131,143,191,204],"availability":[20],"of":[21,24,41,50,59,127,150,154,162,173,178,237],"massive":[22],"amounts":[23],"time":[25,34,45,179],"series,":[26],"ML":[27,52,83,94,168],"DL":[29],"techniques":[30],"are":[31,77,109,189,202,222],"competitive":[32,111],"series":[35,46,180],"forecasting.":[36],"Nevertheless,":[37],"different":[39,175,208],"forms":[40],"non-stationarities":[42,185],"associated":[43,130,142,190],"challenge":[47],"capabilities":[49],"data-driven":[51],"models.":[53],"Furthermore,":[54],"due":[55],"to":[56,74,114,138,146,206],"domain":[58],"forecasting":[60,163],"being":[61],"fostered":[62],"mainly":[63],"by":[64],"statisticians":[65],"econometricians":[67],"over":[68],"years,":[70],"concepts":[72],"related":[73],"forecast":[75,132,144,195,200],"evaluation":[76,99,145,201],"not":[78,110],"mainstream":[80],"knowledge":[81,157],"among":[82],"researchers.":[84],"We":[85],"demonstrate":[86],"our":[88],"work":[89,121],"as":[91,152,182,211],"a":[92,124],"consequence,":[93],"researchers":[95],"oftentimes":[96],"adopt":[97],"flawed":[98],"practices":[100,198],"which":[101],"results":[102],"spurious":[104],"conclusions":[105],"suggesting":[106],"methods":[107,161],"reality":[113],"be":[115],"seemingly":[116],"competitive.":[117],"Therefore,":[118],"this":[120],"we":[122,136],"provide":[123],"tutorial-like":[125],"compilation":[126],"details":[129,172],"evaluation.":[133,196],"This":[134],"way,":[135],"intend":[137],"impart":[139],"information":[141],"fit":[147],"context":[149],"ML,":[151],"means":[153],"bridging":[155],"gap":[158],"between":[159],"traditional":[160],"adopting":[165],"current":[166],"state-of-the-art":[167],"techniques.We":[169],"elaborate":[170],"problematic":[176],"characteristics":[177,236],"such":[181,210],"non-normality":[183],"how":[187],"they":[188],"common":[192],"pitfalls":[193],"Best":[197],"outlined":[203],"respect":[205],"steps":[209],"data":[212],"partitioning,":[213],"error":[214,230],"calculation,":[215],"statistical":[216],"testing,":[217],"others.":[219],"Further":[220],"guidelines":[221],"also":[223],"provided":[224],"along":[225],"selecting":[226],"valid":[227],"suitable":[229],"measures":[231],"depending":[232],"on":[233],"specific":[235],"dataset":[239],"at":[240],"hand.":[241]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4311129667","counts_by_year":[{"year":2024,"cited_by_count":23},{"year":2023,"cited_by_count":35},{"year":2022,"cited_by_count":1}],"updated_date":"2024-11-28T20:12:51.145469","created_date":"2022-12-23"}