{"id":"https://openalex.org/W4310193732","doi":"https://doi.org/10.1007/s10618-022-00882-9","title":"Hybrid Bayesian network discovery with latent variables by scoring multiple interventions","display_name":"Hybrid Bayesian network discovery with latent variables by scoring multiple interventions","publication_year":2022,"publication_date":"2022-11-28","ids":{"openalex":"https://openalex.org/W4310193732","doi":"https://doi.org/10.1007/s10618-022-00882-9"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00882-9","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00882-9.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00882-9.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5015328755","display_name":"Kiattikun Chobtham","orcid":"https://orcid.org/0000-0002-3158-6003"},"institutions":[{"id":"https://openalex.org/I166337079","display_name":"Queen Mary University of London","ror":"https://ror.org/026zzn846","country_code":"GB","type":"funder","lineage":["https://openalex.org/I124357947","https://openalex.org/I166337079"]}],"countries":["GB"],"is_corresponding":true,"raw_author_name":"Kiattikun Chobtham","raw_affiliation_strings":["Bayesian Artificial Intelligence Research Lab, Risk and Information Management (RIM) Research Group, School of Electronic Engineering and Computer Science, Queen Mary University of London (QMUL), London, E1 4NS, UK"],"affiliations":[{"raw_affiliation_string":"Bayesian Artificial Intelligence Research Lab, Risk and Information Management (RIM) Research Group, School of Electronic Engineering and Computer Science, Queen Mary University of London (QMUL), London, E1 4NS, UK","institution_ids":["https://openalex.org/I166337079"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5042011218","display_name":"Anthony C. Constantinou","orcid":"https://orcid.org/0000-0001-7147-6821"},"institutions":[{"id":"https://openalex.org/I166337079","display_name":"Queen Mary University of London","ror":"https://ror.org/026zzn846","country_code":"GB","type":"funder","lineage":["https://openalex.org/I124357947","https://openalex.org/I166337079"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Anthony C. Constantinou","raw_affiliation_strings":["Bayesian Artificial Intelligence Research Lab, Risk and Information Management (RIM) Research Group, School of Electronic Engineering and Computer Science, Queen Mary University of London (QMUL), London, E1 4NS, UK"],"affiliations":[{"raw_affiliation_string":"Bayesian Artificial Intelligence Research Lab, Risk and Information Management (RIM) Research Group, School of Electronic Engineering and Computer Science, Queen Mary University of London (QMUL), London, E1 4NS, UK","institution_ids":["https://openalex.org/I166337079"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5084184776","display_name":"Neville K. Kitson","orcid":"https://orcid.org/0000-0002-7970-1453"},"institutions":[{"id":"https://openalex.org/I166337079","display_name":"Queen Mary University of London","ror":"https://ror.org/026zzn846","country_code":"GB","type":"funder","lineage":["https://openalex.org/I124357947","https://openalex.org/I166337079"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Neville K. Kitson","raw_affiliation_strings":["Bayesian Artificial Intelligence Research Lab, Risk and Information Management (RIM) Research Group, School of Electronic Engineering and Computer Science, Queen Mary University of London (QMUL), London, E1 4NS, UK"],"affiliations":[{"raw_affiliation_string":"Bayesian Artificial Intelligence Research Lab, Risk and Information Management (RIM) Research Group, School of Electronic Engineering and Computer Science, Queen Mary University of London (QMUL), London, E1 4NS, UK","institution_ids":["https://openalex.org/I166337079"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5015328755"],"corresponding_institution_ids":["https://openalex.org/I166337079"],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990},"fwci":0.446,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.354956,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":79},"biblio":{"volume":"37","issue":"1","first_page":"476","last_page":"520"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11303","display_name":"Bayesian Modeling and Causal Inference","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11719","display_name":"Data Quality and Management","score":0.958,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11063","display_name":"Rough Sets and Fuzzy Logic","score":0.9347,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/markov-blanket","display_name":"Markov blanket","score":0.5945908},{"id":"https://openalex.org/keywords/causal-structure","display_name":"Causal structure","score":0.5806001}],"concepts":[{"id":"https://openalex.org/C33724603","wikidata":"https://www.wikidata.org/wiki/Q812540","display_name":"Bayesian network","level":2,"score":0.7507534},{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.6811075},{"id":"https://openalex.org/C123867240","wikidata":"https://www.wikidata.org/wiki/Q3001792","display_name":"Markov blanket","level":5,"score":0.5945908},{"id":"https://openalex.org/C163504300","wikidata":"https://www.wikidata.org/wiki/Q2364925","display_name":"Causal structure","level":2,"score":0.5806001},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5722898},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.55224353},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.51731324},{"id":"https://openalex.org/C158600405","wikidata":"https://www.wikidata.org/wiki/Q5054566","display_name":"Causal inference","level":2,"score":0.48832294},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.46355167},{"id":"https://openalex.org/C160234255","wikidata":"https://www.wikidata.org/wiki/Q812535","display_name":"Bayesian inference","level":3,"score":0.4537705},{"id":"https://openalex.org/C74197172","wikidata":"https://www.wikidata.org/wiki/Q1195339","display_name":"Directed acyclic graph","level":2,"score":0.44481298},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.44089144},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.4389846},{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.39841902},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.34409362},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.32781604},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.22605684},{"id":"https://openalex.org/C163836022","wikidata":"https://www.wikidata.org/wiki/Q6771326","display_name":"Markov model","level":3,"score":0.20750487},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.17484999},{"id":"https://openalex.org/C54907487","wikidata":"https://www.wikidata.org/wiki/Q7915688","display_name":"Variable-order Markov model","level":4,"score":0.13732871},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C62520636","wikidata":"https://www.wikidata.org/wiki/Q944","display_name":"Quantum mechanics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00882-9","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00882-9.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00882-9","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00882-9.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":24,"referenced_works":["https://openalex.org/W1482532598","https://openalex.org/W1492518391","https://openalex.org/W1505477995","https://openalex.org/W1517993545","https://openalex.org/W1593793857","https://openalex.org/W1967411964","https://openalex.org/W2073307618","https://openalex.org/W2086331397","https://openalex.org/W2111061246","https://openalex.org/W2129089873","https://openalex.org/W2135460073","https://openalex.org/W2142857211","https://openalex.org/W2143891888","https://openalex.org/W2152131859","https://openalex.org/W2298329032","https://openalex.org/W2885495226","https://openalex.org/W2915741444","https://openalex.org/W2921227689","https://openalex.org/W2949505632","https://openalex.org/W3013829052","https://openalex.org/W3103539622","https://openalex.org/W3122321081","https://openalex.org/W3145265116","https://openalex.org/W4302423442"],"related_works":["https://openalex.org/W964856136","https://openalex.org/W4310193732","https://openalex.org/W4296426235","https://openalex.org/W4225725060","https://openalex.org/W3211486482","https://openalex.org/W3191091729","https://openalex.org/W3028048819","https://openalex.org/W2953048674","https://openalex.org/W2498107542","https://openalex.org/W1937963769"],"abstract_inverted_index":{"Abstract":[0],"In":[1,66],"Bayesian":[2,82,132],"Networks":[3],"(BNs),":[4],"the":[5,71,110,137,147,175],"direction":[6],"of":[7,112,140,156],"edges":[8,42],"is":[9,23,32,179],"crucial":[10],"for":[11,85],"causal":[12,107],"reasoning":[13],"and":[14,76,97,115,129,161,177],"inference.":[15],"However,":[16],"Markov":[17],"equivalence":[18,79],"class":[19],"considerations":[20],"mean":[21],"it":[22,178],"not":[24],"always":[25],"possible":[26],"to":[27,52,62,146,158,174],"establish":[28],"edge":[29,143],"orientations,":[30],"which":[31],"why":[33],"many":[34],"BN":[35],"structure":[36,86,170],"learning":[37,87,123,171],"algorithms":[38],"cannot":[39],"orientate":[40],"all":[41],"from":[43,88],"purely":[44],"observational":[45,94],"data.":[46],"Moreover,":[47],"latent":[48,113],"confounders":[49],"can":[50],"lead":[51],"false":[53],"positive":[54],"edges.":[55],"Relatively":[56],"few":[57],"methods":[58],"have":[59],"been":[60],"proposed":[61],"address":[63],"these":[64],"issues.":[65],"this":[67],"work,":[68],"we":[69],"present":[70],"hybrid":[72,127],"mFGS-BS":[73,168],"(majority":[74],"rule":[75],"Fast":[77],"Greedy":[78],"Search":[80],"with":[81],"Scoring)":[83],"algorithm":[84,105],"discrete":[89],"data":[90,95,102],"that":[91,135,167],"involves":[92],"an":[93],"set":[96],"one":[98],"or":[99],"more":[100],"interventional":[101],"sets.":[103],"The":[104],"assumes":[106],"insufficiency":[108],"in":[109],"presence":[111],"variables":[114,160],"produces":[116],"a":[117,126,130],"Partial":[118],"Ancestral":[119],"Graph":[120],"(PAG).":[121],"Structure":[122],"relies":[124],"on":[125,153],"approach":[128],"novel":[131],"scoring":[133],"paradigm":[134],"calculates":[136],"posterior":[138],"probability":[139],"each":[141],"directed":[142],"being":[144],"added":[145],"learnt":[148],"graph.":[149],"Experimental":[150],"results":[151],"based":[152],"well-known":[154],"networks":[155],"up":[157],"109":[159],"10":[162],"k":[163],"sample":[164],"size":[165],"show":[166],"improves":[169],"accuracy":[172],"relative":[173],"state-of-the-art":[176],"computationally":[180],"efficient.":[181]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4310193732","counts_by_year":[{"year":2023,"cited_by_count":3}],"updated_date":"2025-02-16T07:58:22.270950","created_date":"2022-11-30"}