{"id":"https://openalex.org/W4308749892","doi":"https://doi.org/10.1007/s10618-022-00879-4","title":"Informative pseudo-labeling for graph neural networks with few labels","display_name":"Informative pseudo-labeling for graph neural networks with few labels","publication_year":2022,"publication_date":"2022-11-09","ids":{"openalex":"https://openalex.org/W4308749892","doi":"https://doi.org/10.1007/s10618-022-00879-4"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00879-4","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00879-4.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00879-4.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5102934651","display_name":"Yayong Li","orcid":"https://orcid.org/0000-0003-2534-1971"},"institutions":[{"id":"https://openalex.org/I114017466","display_name":"University of Technology Sydney","ror":"https://ror.org/03f0f6041","country_code":"AU","type":"funder","lineage":["https://openalex.org/I114017466"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Yayong Li","raw_affiliation_strings":["Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW, Australia"],"affiliations":[{"raw_affiliation_string":"Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW, Australia","institution_ids":["https://openalex.org/I114017466"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5014017635","display_name":"Jie Yin","orcid":"https://orcid.org/0000-0002-2063-8437"},"institutions":[{"id":"https://openalex.org/I129604602","display_name":"University of Sydney","ror":"https://ror.org/0384j8v12","country_code":"AU","type":"funder","lineage":["https://openalex.org/I129604602"]}],"countries":["AU"],"is_corresponding":true,"raw_author_name":"Jie Yin","raw_affiliation_strings":["Discipline of Business Analytics, The University of Sydney, Sydney, NSW, Australia"],"affiliations":[{"raw_affiliation_string":"Discipline of Business Analytics, The University of Sydney, Sydney, NSW, Australia","institution_ids":["https://openalex.org/I129604602"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5069988750","display_name":"Ling Chen","orcid":"https://orcid.org/0000-0002-6468-5729"},"institutions":[{"id":"https://openalex.org/I114017466","display_name":"University of Technology Sydney","ror":"https://ror.org/03f0f6041","country_code":"AU","type":"funder","lineage":["https://openalex.org/I114017466"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Ling Chen","raw_affiliation_strings":["Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW, Australia"],"affiliations":[{"raw_affiliation_string":"Australian Artificial Intelligence Institute, University of Technology Sydney, Sydney, NSW, Australia","institution_ids":["https://openalex.org/I114017466"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5014017635"],"corresponding_institution_ids":["https://openalex.org/I129604602"],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990},"fwci":2.678,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":18,"citation_normalized_percentile":{"value":0.999973,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":"37","issue":"1","first_page":"228","last_page":"254"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9634,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10203","display_name":"Recommender Systems and Techniques","score":0.956,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/regularization","display_name":"Regularization","score":0.4448747}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.75349784},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.62990487},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.60623646},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.5157695},{"id":"https://openalex.org/C2776135515","wikidata":"https://www.wikidata.org/wiki/Q17143721","display_name":"Regularization (linguistics)","level":2,"score":0.4448747},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.3299614},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.15732929}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00879-4","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00879-4.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00879-4","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00879-4.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.4,"id":"https://metadata.un.org/sdg/11","display_name":"Sustainable cities and communities"}],"grants":[{"funder":"https://openalex.org/F4320322725","funder_display_name":"China Scholarship Council","award_id":"201806070131"},{"funder":"https://openalex.org/F4320334704","funder_display_name":"Australian Research Council","award_id":"DP210101347"}],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W129305155","https://openalex.org/W2079057609","https://openalex.org/W2964051675","https://openalex.org/W2978625989","https://openalex.org/W2998269939","https://openalex.org/W3012816161","https://openalex.org/W3092206109","https://openalex.org/W3092999650","https://openalex.org/W3094624443","https://openalex.org/W3099152386","https://openalex.org/W3134210100"],"related_works":["https://openalex.org/W4394896187","https://openalex.org/W4386462264","https://openalex.org/W4364306694","https://openalex.org/W4312192474","https://openalex.org/W4306674287","https://openalex.org/W3170094116","https://openalex.org/W3107602296","https://openalex.org/W3046775127","https://openalex.org/W2961085424","https://openalex.org/W2033914206"],"abstract_inverted_index":{"Abstract":[0],"Graph":[1],"neural":[2],"networks":[3],"(GNNs)":[4],"have":[5],"achieved":[6],"state-of-the-art":[7,205],"results":[8],"for":[9],"semi-supervised":[10,36],"node":[11],"classification":[12,118],"on":[13,193,211],"graphs.":[14,212],"Nevertheless,":[15],"the":[16,34,45,51,55,71,86,105,117,146,154,163],"challenge":[17],"of":[18,33,53,134],"how":[19],"to":[20,42,62,104,116,131,144,185],"effectively":[21],"learn":[22],"GNNs":[23,135],"with":[24,58,109,136,181],"very":[25,137],"few":[26,138],"labels":[27],"is":[28,50,143],"still":[29],"under-explored.":[30],"As":[31],"one":[32],"prevalent":[35],"methods,":[37],"pseudo-labeling":[38,73,128],"has":[39],"been":[40],"proposed":[41,201],"explicitly":[43],"address":[44],"label":[46,87,165],"scarcity":[47],"problem.":[48],"It":[49],"process":[52],"augmenting":[54],"training":[56],"set":[57,88],"pseudo-labeled":[59],"unlabeled":[60,93],"nodes":[61,94,149],"retrain":[63],"a":[64,67,125,177,182],"model":[65,189],"in":[66],"self-training":[68],"cycle.":[69],"However,":[70],"existing":[72],"approaches":[74],"often":[75],"suffer":[76],"from":[77,171],"two":[78],"major":[79],"drawbacks.":[80],"First,":[81],"these":[82,100],"methods":[83,101,210],"conservatively":[84],"expand":[85],"by":[89],"selecting":[90],"only":[91],"high-confidence":[92],"without":[95],"assessing":[96],"their":[97,113],"informativeness.":[98],"Second,":[99],"incorporate":[102,186],"pseudo-labels":[103,187],"same":[106],"loss":[107],"function":[108],"genuine":[110],"labels,":[111],"ignoring":[112],"distinct":[114],"contributions":[115],"task.":[119],"In":[120],"this":[121],"paper,":[122],"we":[123,173],"propose":[124],"novel":[126],"informative":[127,148],"framework":[129],"(InfoGNN)":[130],"facilitate":[132],"learning":[133],"labels.":[139],"Our":[140],"key":[141],"idea":[142],"pseudo-label":[145],"most":[147],"that":[150,199],"can":[151],"maximally":[152],"represent":[153],"local":[155],"neighborhoods":[156],"via":[157],"mutual":[158],"information":[159],"maximization.":[160],"To":[161],"mitigate":[162],"potential":[164],"noise":[166],"and":[167,207],"class-imbalance":[168],"problem":[169],"arising":[170],"pseudo-labeling,":[172],"also":[174],"carefully":[175],"devise":[176],"generalized":[178],"cross":[179],"entropy":[180],"class-balanced":[183],"regularization":[184],"into":[188],"retraining.":[190],"Extensive":[191],"experiments":[192],"six":[194],"real-world":[195],"graph":[196],"datasets":[197],"validate":[198],"our":[200],"approach":[202],"significantly":[203],"outperforms":[204],"baselines":[206],"competitive":[208],"self-supervised":[209]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4308749892","counts_by_year":[{"year":2025,"cited_by_count":2},{"year":2024,"cited_by_count":11},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":1}],"updated_date":"2025-02-20T14:45:26.395088","created_date":"2022-11-15"}