{"id":"https://openalex.org/W4301595762","doi":"https://doi.org/10.1007/s10618-022-00871-y","title":"Practical joint human-machine exploration of industrial time series using the matrix profile","display_name":"Practical joint human-machine exploration of industrial time series using the matrix profile","publication_year":2022,"publication_date":"2022-10-05","ids":{"openalex":"https://openalex.org/W4301595762","doi":"https://doi.org/10.1007/s10618-022-00871-y"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00871-y","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00871-y.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00871-y.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5044006933","display_name":"Felix Nilsson","orcid":"https://orcid.org/0000-0003-4524-4204"},"institutions":[],"countries":["SE"],"is_corresponding":true,"raw_author_name":"Felix Nilsson","raw_affiliation_strings":["HMS Labs, HMS Industrial Networks AB, Stationsgatan 37, 30250, Halmstad, Sweden"],"affiliations":[{"raw_affiliation_string":"HMS Labs, HMS Industrial Networks AB, Stationsgatan 37, 30250, Halmstad, Sweden","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5045207534","display_name":"Mohamed-Rafik Bouguelia","orcid":"https://orcid.org/0000-0002-2859-6155"},"institutions":[{"id":"https://openalex.org/I746986","display_name":"Halmstad University","ror":"https://ror.org/03h0qfp10","country_code":"SE","type":"education","lineage":["https://openalex.org/I746986"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Mohamed-Rafik Bouguelia","raw_affiliation_strings":["Center for Applied Intelligent Systems Research, Halmstad University, Kristian IV:s v\u00e4g 3, 30118, Halmstad, Sweden"],"affiliations":[{"raw_affiliation_string":"Center for Applied Intelligent Systems Research, Halmstad University, Kristian IV:s v\u00e4g 3, 30118, Halmstad, Sweden","institution_ids":["https://openalex.org/I746986"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5019978147","display_name":"Thorsteinn R\u00f6gnvaldsson","orcid":"https://orcid.org/0000-0001-5163-2997"},"institutions":[{"id":"https://openalex.org/I746986","display_name":"Halmstad University","ror":"https://ror.org/03h0qfp10","country_code":"SE","type":"education","lineage":["https://openalex.org/I746986"]}],"countries":["SE"],"is_corresponding":false,"raw_author_name":"Thorsteinn R\u00f6gnvaldsson","raw_affiliation_strings":["Center for Applied Intelligent Systems Research, Halmstad University, Kristian IV:s v\u00e4g 3, 30118, Halmstad, Sweden"],"affiliations":[{"raw_affiliation_string":"Center for Applied Intelligent Systems Research, Halmstad University, Kristian IV:s v\u00e4g 3, 30118, Halmstad, Sweden","institution_ids":["https://openalex.org/I746986"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5044006933"],"corresponding_institution_ids":[],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"fwci":0.911,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":5,"citation_normalized_percentile":{"value":0.677185,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":86},"biblio":{"volume":"37","issue":"1","first_page":"1","last_page":"38"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12205","display_name":"Clustering of Time Series Data and Algorithms","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12205","display_name":"Clustering of Time Series Data and Algorithms","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":0.9572,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10640","display_name":"Chemometrics in Analytical Chemistry and Food Technology","score":0.9567,"subfield":{"id":"https://openalex.org/subfields/1602","display_name":"Analytical Chemistry"},"field":{"id":"https://openalex.org/fields/16","display_name":"Chemistry"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.6608556},{"id":"https://openalex.org/keywords/pattern-discovery","display_name":"Pattern Discovery","score":0.509296}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7145209},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.6608556},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.6484505},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.58703136},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.5567362},{"id":"https://openalex.org/C18555067","wikidata":"https://www.wikidata.org/wiki/Q8375051","display_name":"Joint (building)","level":2,"score":0.46244767},{"id":"https://openalex.org/C139807058","wikidata":"https://www.wikidata.org/wiki/Q352374","display_name":"Adaptation (eye)","level":2,"score":0.45758358},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4197778},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.41573694},{"id":"https://openalex.org/C13736549","wikidata":"https://www.wikidata.org/wiki/Q4489420","display_name":"Industrial engineering","level":1,"score":0.37259817},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.18763995},{"id":"https://openalex.org/C170154142","wikidata":"https://www.wikidata.org/wiki/Q150737","display_name":"Architectural engineering","level":1,"score":0.0},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00871-y","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00871-y.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-48164","pdf_url":"https://hh.diva-portal.org/smash/get/diva2:1699772/FULLTEXT02","source":{"id":"https://openalex.org/S4306401559","display_name":"KTH Publication Database DiVA (KTH Royal Institute of Technology)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-022-00871-y","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-022-00871-y.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.63}],"grants":[{"funder":"https://openalex.org/F4320330333","funder_display_name":"H\u00f6gskolan i Halmstad","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W1891265900","https://openalex.org/W2006761268","https://openalex.org/W2015602687","https://openalex.org/W2048092465","https://openalex.org/W2049704739","https://openalex.org/W2085487226","https://openalex.org/W2095409369","https://openalex.org/W2097749765","https://openalex.org/W2109606373","https://openalex.org/W2142635246","https://openalex.org/W2249699048","https://openalex.org/W2583336059","https://openalex.org/W2584499795","https://openalex.org/W2586871115","https://openalex.org/W2742517588","https://openalex.org/W2907759361","https://openalex.org/W2982975975","https://openalex.org/W2997424509","https://openalex.org/W3003614699","https://openalex.org/W3119314157","https://openalex.org/W3119689987","https://openalex.org/W3127386226","https://openalex.org/W3128713513","https://openalex.org/W3169372665","https://openalex.org/W98105570"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2378211422","https://openalex.org/W2130974462","https://openalex.org/W2087343574","https://openalex.org/W2086519370","https://openalex.org/W2028665553","https://openalex.org/W1024193751"],"abstract_inverted_index":{"Abstract":[0],"Technological":[1],"advancements":[2],"and":[3,56,88],"widespread":[4],"adaptation":[5],"of":[6,47,93],"new":[7],"technology":[8],"in":[9,113],"industry":[10],"have":[11],"made":[12],"industrial":[13,33,48,68],"time":[14,34,49,95,122],"series":[15,35,50,123],"data":[16,51,69],"more":[17],"available":[18],"than":[19],"ever":[20],"before.":[21],"With":[22],"this":[23],"development":[24],"grows":[25],"the":[26,53,76,94,109],"need":[27],"for":[28,31,43,119],"versatile":[29],"methods":[30,118],"mining":[32],"data.":[36],"This":[37],"paper":[38],"introduces":[39],"a":[40,90],"practical":[41],"approach":[42,62,110],"joint":[44],"human-machine":[45],"exploration":[46],"using":[52],"Matrix":[54],"Profile,":[55],"presents":[57],"some":[58],"challenges":[59],"involved.":[60],"The":[61],"is":[63,100],"demonstrated":[64],"on":[65,103],"three":[66],"real-life":[67],"sets":[70],"to":[71,78,115],"show":[72],"how":[73],"it":[74],"enables":[75],"user":[77],"quickly":[79],"extract":[80],"semantic":[81],"information,":[82],"detect":[83],"cycles,":[84],"find":[85],"deviating":[86],"patterns,":[87],"gain":[89],"deeper":[91],"understanding":[92],"series.":[96],"A":[97],"benchmark":[98],"test":[99],"also":[101],"presented":[102],"ECG":[104],"(electrocardiogram)":[105],"data,":[106],"showing":[107],"that":[108],"works":[111],"well":[112],"comparison":[114],"previously":[116],"suggested":[117],"extracting":[120],"relevant":[121],"motifs.":[124]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4301595762","counts_by_year":[{"year":2024,"cited_by_count":2},{"year":2023,"cited_by_count":3}],"updated_date":"2024-11-30T22:24:20.006037","created_date":"2022-10-05"}