{"id":"https://openalex.org/W3176898271","doi":"https://doi.org/10.1007/s10618-021-00771-7","title":"AURORA: A Unified fRamework fOR Anomaly detection on multivariate time series","display_name":"AURORA: A Unified fRamework fOR Anomaly detection on multivariate time series","publication_year":2021,"publication_date":"2021-06-23","ids":{"openalex":"https://openalex.org/W3176898271","doi":"https://doi.org/10.1007/s10618-021-00771-7","mag":"3176898271","pmid":"https://pubmed.ncbi.nlm.nih.gov/34177356","pmcid":"https://www.ncbi.nlm.nih.gov/pmc/articles/8220123"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-021-00771-7","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-021-00771-7.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref","pubmed"],"open_access":{"is_oa":true,"oa_status":"bronze","oa_url":"https://link.springer.com/content/pdf/10.1007/s10618-021-00771-7.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100351907","display_name":"Lin Zhang","orcid":"https://orcid.org/0000-0003-0424-9965"},"institutions":[{"id":"https://openalex.org/I392282","display_name":"University at Albany, State University of New York","ror":"https://ror.org/012zs8222","country_code":"US","type":"education","lineage":["https://openalex.org/I392282"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"Lin Zhang","raw_affiliation_strings":["Department of Computer Science, University at Albany\u2014SUNY, Albany, NY, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University at Albany\u2014SUNY, Albany, NY, USA","institution_ids":["https://openalex.org/I392282"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100385192","display_name":"Wenyu Zhang","orcid":"https://orcid.org/0000-0001-5488-2158"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Wenyu Zhang","raw_affiliation_strings":["Cornell University, Statistics and Data Science, Ithaca, NY, USA"],"affiliations":[{"raw_affiliation_string":"Cornell University, Statistics and Data Science, Ithaca, NY, USA","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5040305954","display_name":"Maxwell McNeil","orcid":"https://orcid.org/0009-0007-3298-5093"},"institutions":[{"id":"https://openalex.org/I392282","display_name":"University at Albany, State University of New York","ror":"https://ror.org/012zs8222","country_code":"US","type":"education","lineage":["https://openalex.org/I392282"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Maxwell J. McNeil","raw_affiliation_strings":["Department of Computer Science, University at Albany\u2014SUNY, Albany, NY, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University at Albany\u2014SUNY, Albany, NY, USA","institution_ids":["https://openalex.org/I392282"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5011414908","display_name":"Nachuan Chengwang","orcid":null},"institutions":[{"id":"https://openalex.org/I392282","display_name":"University at Albany, State University of New York","ror":"https://ror.org/012zs8222","country_code":"US","type":"education","lineage":["https://openalex.org/I392282"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Nachuan Chengwang","raw_affiliation_strings":["Department of Computer Science, University at Albany\u2014SUNY, Albany, NY, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University at Albany\u2014SUNY, Albany, NY, USA","institution_ids":["https://openalex.org/I392282"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5051412963","display_name":"David S. Matteson","orcid":"https://orcid.org/0000-0002-2674-0387"},"institutions":[{"id":"https://openalex.org/I205783295","display_name":"Cornell University","ror":"https://ror.org/05bnh6r87","country_code":"US","type":"education","lineage":["https://openalex.org/I205783295"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"David S. Matteson","raw_affiliation_strings":["Cornell University, Statistics and Data Science, Ithaca, NY, USA"],"affiliations":[{"raw_affiliation_string":"Cornell University, Statistics and Data Science, Ithaca, NY, USA","institution_ids":["https://openalex.org/I205783295"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5001272357","display_name":"Petko Bogdanov","orcid":"https://orcid.org/0000-0001-6310-3224"},"institutions":[{"id":"https://openalex.org/I392282","display_name":"University at Albany, State University of New York","ror":"https://ror.org/012zs8222","country_code":"US","type":"education","lineage":["https://openalex.org/I392282"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Petko Bogdanov","raw_affiliation_strings":["Department of Computer Science, University at Albany\u2014SUNY, Albany, NY, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, University at Albany\u2014SUNY, Albany, NY, USA","institution_ids":["https://openalex.org/I392282"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5100351907"],"corresponding_institution_ids":["https://openalex.org/I392282"],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"apc_paid":null,"fwci":0.722,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":6,"citation_normalized_percentile":{"value":0.799581,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":81,"max":83},"biblio":{"volume":"35","issue":"5","first_page":"1882","last_page":"1905"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11512","display_name":"Anomaly Detection in High-Dimensional Data","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Clustering of Time Series Data and Algorithms","score":0.9972,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10400","display_name":"Network Intrusion Detection and Defense Mechanisms","score":0.9957,"subfield":{"id":"https://openalex.org/subfields/1705","display_name":"Computer Networks and Communications"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/anomaly-detection","display_name":"Anomaly Detection","score":0.604854},{"id":"https://openalex.org/keywords/anomaly","display_name":"Anomaly (physics)","score":0.5924165},{"id":"https://openalex.org/keywords/outlier-detection","display_name":"Outlier Detection","score":0.58907},{"id":"https://openalex.org/keywords/intrusion-detection","display_name":"Intrusion Detection","score":0.524291},{"id":"https://openalex.org/keywords/pattern-discovery","display_name":"Pattern Discovery","score":0.521951}],"concepts":[{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.7589495},{"id":"https://openalex.org/C739882","wikidata":"https://www.wikidata.org/wiki/Q3560506","display_name":"Anomaly detection","level":2,"score":0.7305909},{"id":"https://openalex.org/C143724316","wikidata":"https://www.wikidata.org/wiki/Q312468","display_name":"Series (stratigraphy)","level":2,"score":0.70807856},{"id":"https://openalex.org/C12997251","wikidata":"https://www.wikidata.org/wiki/Q567560","display_name":"Anomaly (physics)","level":2,"score":0.5924165},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.58731246},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.5148622},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.50476754},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3911711},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.23614517},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.16445175},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.07013732},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C26873012","wikidata":"https://www.wikidata.org/wiki/Q214781","display_name":"Condensed matter physics","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-021-00771-7","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-021-00771-7.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8220123","pdf_url":null,"source":{"id":"https://openalex.org/S2764455111","display_name":"PubMed Central","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":false,"landing_page_url":"https://pubmed.ncbi.nlm.nih.gov/34177356","pdf_url":null,"source":{"id":"https://openalex.org/S4306525036","display_name":"PubMed","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I1299303238","host_organization_name":"National Institutes of Health","host_organization_lineage":["https://openalex.org/I1299303238"],"host_organization_lineage_names":["National Institutes of Health"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-021-00771-7","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-021-00771-7.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.49,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"SCC- 1831547"},{"funder":"https://openalex.org/F4320335353","funder_display_name":"National Science Foundation of Sri Lanka","award_id":"USAID"}],"datasets":[],"versions":[],"referenced_works_count":51,"referenced_works":["https://openalex.org/W1442292319","https://openalex.org/W1531869541","https://openalex.org/W1540310433","https://openalex.org/W1598358187","https://openalex.org/W1736339626","https://openalex.org/W1826290430","https://openalex.org/W1967961172","https://openalex.org/W1975684011","https://openalex.org/W1985715063","https://openalex.org/W1988833430","https://openalex.org/W1988861237","https://openalex.org/W2000661457","https://openalex.org/W2026453187","https://openalex.org/W2044023374","https://openalex.org/W2053893747","https://openalex.org/W2073587703","https://openalex.org/W2093606067","https://openalex.org/W2103972604","https://openalex.org/W2113271473","https://openalex.org/W2131904035","https://openalex.org/W2135216562","https://openalex.org/W2144182447","https://openalex.org/W2158663270","https://openalex.org/W2164239649","https://openalex.org/W2164278908","https://openalex.org/W2191950414","https://openalex.org/W2296521892","https://openalex.org/W2296719434","https://openalex.org/W2515822248","https://openalex.org/W2584499795","https://openalex.org/W2585077751","https://openalex.org/W2608459225","https://openalex.org/W2613206411","https://openalex.org/W2734096706","https://openalex.org/W2743138268","https://openalex.org/W27994497","https://openalex.org/W2926608040","https://openalex.org/W2962736999","https://openalex.org/W2963373115","https://openalex.org/W2982298099","https://openalex.org/W3000919776","https://openalex.org/W3001763755","https://openalex.org/W3098957257","https://openalex.org/W3106543020","https://openalex.org/W3107117009","https://openalex.org/W3129272280","https://openalex.org/W3138809102","https://openalex.org/W3153872861","https://openalex.org/W4230970737","https://openalex.org/W4256177618","https://openalex.org/W4292363360"],"related_works":["https://openalex.org/W4377864969","https://openalex.org/W4300558037","https://openalex.org/W4290647774","https://openalex.org/W3210364259","https://openalex.org/W3207797160","https://openalex.org/W3189286258","https://openalex.org/W2912112202","https://openalex.org/W2806741695","https://openalex.org/W2667207928","https://openalex.org/W2118640767"],"abstract_inverted_index":{"The":[0],"ability":[1,209],"to":[2,155,194,210],"accurately":[3,93],"and":[4,27,56,70,82,139,151,159,168,171,207,214],"consistently":[5],"discover":[6],"anomalies":[7,35,95],"in":[8,13,36,96,117,127,204],"time":[9,37,40,45,120],"series":[10,38],"is":[11,130,220],"important":[12],"many":[14],"applications.":[15],"Fields":[16],"such":[17,97],"as":[18],"finance":[19],"(fraud":[20],"detection),":[21,25,206],"information":[22],"security":[23],"(intrusion":[24],"healthcare,":[26],"others":[28],"all":[29],"benefit":[30],"from":[31,49],"anomaly":[32,115,186],"detection.":[33],"Intuitively,":[34],"are":[39],"points":[41,46],"or":[42],"sequences":[43],"of":[44,78,175,192,197,222],"that":[47,136],"deviate":[48],"normal":[50,105,199],"behavior":[51,134,200],"characterized":[52],"by":[53],"periodic":[54,149],"oscillations":[55,84],"long-term":[57,87,140],"trends.":[58,89,141],"For":[59],"example,":[60],"the":[61,173,208],"typical":[62],"activity":[63],"on":[64,165],"e-commerce":[65],"websites":[66],"exhibits":[67,80],"weekly":[68,83],"periodicity":[69,138],"grows":[71],"steadily":[72],"before":[73],"holidays.":[74],"Similarly,":[75],"domestic":[76],"usage":[77],"electricity":[79],"daily":[81],"combined":[85],"with":[86],"season-dependent":[88],"How":[90],"can":[91],"we":[92,145],"detect":[94,211],"domains":[98],"while":[99],"simultaneously":[100],"learning":[101],"a":[102,109,131,147,152],"model":[103,135],"for":[104,114,185],"behavior?":[106],"We":[107,162],"propose":[108],"robust":[110],"offline":[111],"unsupervised":[112],"framework":[113,129],"detection":[116],"seasonal":[118,158],"multivariate":[119],"series,":[121],"called":[122],"AURORA.":[123],"A":[124],"key":[125],"innovation":[126],"our":[128,176],"general":[132],"background":[133],"unifies":[137],"To":[142],"this":[143],"end,":[144],"leverage":[146],"Ramanujan":[148],"dictionary":[150,154],"spline-based":[153],"capture":[156],"both":[157,166,212],"trend":[160],"patterns.":[161],"conduct":[163],"experiments":[164],"synthetic":[167],"real-world":[169],"datasets":[170],"demonstrate":[172],"effectiveness":[174],"method.":[177],"AURORA":[178,219],"has":[179],"significant":[180],"advantages":[181],"over":[182],"existing":[183],"models":[184],"detection,":[187],"including":[188],"high":[189],"accuracy":[190,203],"(AUC":[191],"up":[193],"0.98),":[195],"interpretability":[196],"recovered":[198],"(":[201],"$$100\\%$$":[202],"period":[205],"point":[213],"contextual":[215],"anomalies.":[216],"In":[217],"addition,":[218],"orders":[221],"magnitude":[223],"faster":[224],"than":[225],"baselines.":[226]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3176898271","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":1},{"year":2021,"cited_by_count":2}],"updated_date":"2024-11-22T12:15:12.574244","created_date":"2021-07-05"}