{"id":"https://openalex.org/W3160257089","doi":"https://doi.org/10.1007/s10618-021-00765-5","title":"Smoothed dilated convolutions for improved dense prediction","display_name":"Smoothed dilated convolutions for improved dense prediction","publication_year":2021,"publication_date":"2021-05-12","ids":{"openalex":"https://openalex.org/W3160257089","doi":"https://doi.org/10.1007/s10618-021-00765-5","mag":"3160257089"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/s10618-021-00765-5","pdf_url":null,"source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/1808.08931","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100656202","display_name":"Zhengyang Wang","orcid":"https://orcid.org/0000-0002-5146-2884"},"institutions":[{"id":"https://openalex.org/I91045830","display_name":"Texas A&M University","ror":"https://ror.org/01f5ytq51","country_code":"US","type":"education","lineage":["https://openalex.org/I91045830"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Zhengyang Wang","raw_affiliation_strings":["Texas A&M University, College Station, USA"],"affiliations":[{"raw_affiliation_string":"Texas A&M University, College Station, USA","institution_ids":["https://openalex.org/I91045830"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5052278550","display_name":"Shuiwang Ji","orcid":"https://orcid.org/0000-0002-4205-4563"},"institutions":[{"id":"https://openalex.org/I91045830","display_name":"Texas A&M University","ror":"https://ror.org/01f5ytq51","country_code":"US","type":"education","lineage":["https://openalex.org/I91045830"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Shuiwang Ji","raw_affiliation_strings":["Texas A&M University, College Station, USA"],"affiliations":[{"raw_affiliation_string":"Texas A&M University, College Station, USA","institution_ids":["https://openalex.org/I91045830"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"apc_paid":null,"fwci":3.887,"has_fulltext":false,"cited_by_count":36,"citation_normalized_percentile":{"value":0.99994,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"35","issue":"4","first_page":"1470","last_page":"1496"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12676","display_name":"Theory and Applications of Extreme Learning Machines","score":0.9965,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/smoothing","display_name":"Smoothing","score":0.77311915},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.67865795},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.523334},{"id":"https://openalex.org/keywords/clustering-analysis","display_name":"Clustering Analysis","score":0.503435}],"concepts":[{"id":"https://openalex.org/C3770464","wikidata":"https://www.wikidata.org/wiki/Q775963","display_name":"Smoothing","level":2,"score":0.77311915},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7286819},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.67865795},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.6347421},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.57659876},{"id":"https://openalex.org/C2779227376","wikidata":"https://www.wikidata.org/wiki/Q6505497","display_name":"Layer (electronics)","level":2,"score":0.52461755},{"id":"https://openalex.org/C2777210771","wikidata":"https://www.wikidata.org/wiki/Q4927124","display_name":"Block (permutation group theory)","level":2,"score":0.5180421},{"id":"https://openalex.org/C2780586882","wikidata":"https://www.wikidata.org/wiki/Q7520643","display_name":"Simple (philosophy)","level":2,"score":0.50129414},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.43484867},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.43212074},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.38602453},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.33636853},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.18339157},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.10954893},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C178790620","wikidata":"https://www.wikidata.org/wiki/Q11351","display_name":"Organic chemistry","level":1,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/s10618-021-00765-5","pdf_url":null,"source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1808.08931","pdf_url":"http://arxiv.org/pdf/1808.08931","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1808.08931","pdf_url":"http://arxiv.org/pdf/1808.08931","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320332180","funder_display_name":"Defense Advanced Research Projects Agency","award_id":"N66001-17-2-4031"},{"funder":"https://openalex.org/F4320337389","funder_display_name":"Division of Information and Intelligent Systems","award_id":"1633359"}],"datasets":[],"versions":[],"referenced_works_count":31,"referenced_works":["https://openalex.org/W1610060839","https://openalex.org/W1861492603","https://openalex.org/W1903029394","https://openalex.org/W1949049686","https://openalex.org/W201176276","https://openalex.org/W2031489346","https://openalex.org/W2092985495","https://openalex.org/W2108598243","https://openalex.org/W2116988482","https://openalex.org/W2144794286","https://openalex.org/W2194775991","https://openalex.org/W2340897893","https://openalex.org/W2412782625","https://openalex.org/W2531409750","https://openalex.org/W2540404261","https://openalex.org/W2557728737","https://openalex.org/W2558460151","https://openalex.org/W2560023338","https://openalex.org/W2592939477","https://openalex.org/W2809418595","https://openalex.org/W2910639395","https://openalex.org/W2953384591","https://openalex.org/W2962850830","https://openalex.org/W2963153291","https://openalex.org/W2963542991","https://openalex.org/W2963629403","https://openalex.org/W2963840672","https://openalex.org/W2963858333","https://openalex.org/W3099004229","https://openalex.org/W4251033893","https://openalex.org/W77200240"],"related_works":["https://openalex.org/W4238188170","https://openalex.org/W3019910406","https://openalex.org/W2964954556","https://openalex.org/W2925692864","https://openalex.org/W2383807498","https://openalex.org/W2149980199","https://openalex.org/W2125114371","https://openalex.org/W1997992934","https://openalex.org/W1987225439","https://openalex.org/W1978572805"],"abstract_inverted_index":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3160257089","counts_by_year":[{"year":2024,"cited_by_count":7},{"year":2023,"cited_by_count":16},{"year":2022,"cited_by_count":10},{"year":2021,"cited_by_count":3}],"updated_date":"2024-11-23T21:33:41.337468","created_date":"2021-05-24"}