{"id":"https://openalex.org/W2125102327","doi":"https://doi.org/10.1007/s10618-008-0102-5","title":"Scalable pattern mining with Bayesian networks as background knowledge","display_name":"Scalable pattern mining with Bayesian networks as background knowledge","publication_year":2008,"publication_date":"2008-06-18","ids":{"openalex":"https://openalex.org/W2125102327","doi":"https://doi.org/10.1007/s10618-008-0102-5","mag":"2125102327"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-008-0102-5","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-008-0102-5.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10618-008-0102-5.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5068666126","display_name":"Szymon Jaroszewicz","orcid":"https://orcid.org/0000-0001-9327-5019"},"institutions":[{"id":"https://openalex.org/I4210125529","display_name":"National Institute of Telecommunications","ror":"https://ror.org/03053v606","country_code":"PL","type":"facility","lineage":["https://openalex.org/I4210125529"]}],"countries":["PL"],"is_corresponding":false,"raw_author_name":"Szymon Jaroszewicz","raw_affiliation_strings":["National Institute of Telecommunications, Warsaw, Poland#TAB#"],"affiliations":[{"raw_affiliation_string":"National Institute of Telecommunications, Warsaw, Poland#TAB#","institution_ids":["https://openalex.org/I4210125529"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5007427935","display_name":"Tobias Scheffer","orcid":"https://orcid.org/0000-0003-4405-7925"},"institutions":[{"id":"https://openalex.org/I149899117","display_name":"Max Planck Society","ror":"https://ror.org/01hhn8329","country_code":"DE","type":"nonprofit","lineage":["https://openalex.org/I149899117"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Tobias Scheffer","raw_affiliation_strings":["Max Planck Institute for Computer Science, Saarbr\u00fccken, Germany#TAB#"],"affiliations":[{"raw_affiliation_string":"Max Planck Institute for Computer Science, Saarbr\u00fccken, Germany#TAB#","institution_ids":["https://openalex.org/I149899117"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5072140970","display_name":"Dan A. Simovici","orcid":null},"institutions":[{"id":"https://openalex.org/I24603500","display_name":"University of Massachusetts Amherst","ror":"https://ror.org/0072zz521","country_code":"US","type":"funder","lineage":["https://openalex.org/I24603500"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Dan A. Simovici","raw_affiliation_strings":["University of Massachusetts at Boston, Boston, USA."],"affiliations":[{"raw_affiliation_string":"University of Massachusetts at Boston, Boston, USA.","institution_ids":["https://openalex.org/I24603500"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990},"fwci":9.399,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":27,"citation_normalized_percentile":{"value":0.949363,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":90,"max":91},"biblio":{"volume":"18","issue":"1","first_page":"56","last_page":"100"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10538","display_name":"Data Mining Algorithms and Applications","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11063","display_name":"Rough Sets and Fuzzy Logic","score":0.9992,"subfield":{"id":"https://openalex.org/subfields/1703","display_name":"Computational Theory and Mathematics"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11106","display_name":"Data Management and Algorithms","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/graphical-model","display_name":"Graphical model","score":0.7520094},{"id":"https://openalex.org/keywords/divergence","display_name":"Divergence (linguistics)","score":0.49111673}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7830237},{"id":"https://openalex.org/C155846161","wikidata":"https://www.wikidata.org/wiki/Q1143367","display_name":"Graphical model","level":2,"score":0.7520094},{"id":"https://openalex.org/C48044578","wikidata":"https://www.wikidata.org/wiki/Q727490","display_name":"Scalability","level":2,"score":0.72762895},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.61135185},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.60642695},{"id":"https://openalex.org/C33724603","wikidata":"https://www.wikidata.org/wiki/Q812540","display_name":"Bayesian network","level":2,"score":0.59390074},{"id":"https://openalex.org/C192209626","wikidata":"https://www.wikidata.org/wiki/Q190909","display_name":"Focus (optics)","level":2,"score":0.5805069},{"id":"https://openalex.org/C120567893","wikidata":"https://www.wikidata.org/wiki/Q1582085","display_name":"Knowledge extraction","level":2,"score":0.5462347},{"id":"https://openalex.org/C89198739","wikidata":"https://www.wikidata.org/wiki/Q3079880","display_name":"Data stream mining","level":2,"score":0.5182619},{"id":"https://openalex.org/C207390915","wikidata":"https://www.wikidata.org/wiki/Q1230525","display_name":"Divergence (linguistics)","level":2,"score":0.49111673},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4659226},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.39070874},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.36975747},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3348218},{"id":"https://openalex.org/C77088390","wikidata":"https://www.wikidata.org/wiki/Q8513","display_name":"Database","level":1,"score":0.11229122},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C120665830","wikidata":"https://www.wikidata.org/wiki/Q14620","display_name":"Optics","level":1,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-008-0102-5","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-008-0102-5.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10618-008-0102-5","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10618-008-0102-5.pdf","source":{"id":"https://openalex.org/S121920818","display_name":"Data Mining and Knowledge Discovery","issn_l":"1384-5810","issn":["1384-5810","1573-756X"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by-nc","license_id":"https://openalex.org/licenses/cc-by-nc","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":47,"referenced_works":["https://openalex.org/W1494547863","https://openalex.org/W1518082915","https://openalex.org/W1519346730","https://openalex.org/W1524247175","https://openalex.org/W1533875715","https://openalex.org/W1541824660","https://openalex.org/W1543507677","https://openalex.org/W1587113570","https://openalex.org/W1592987584","https://openalex.org/W1645969895","https://openalex.org/W1755360231","https://openalex.org/W1793332665","https://openalex.org/W1830407698","https://openalex.org/W1929801863","https://openalex.org/W1973996621","https://openalex.org/W1982333717","https://openalex.org/W2038812321","https://openalex.org/W2042970816","https://openalex.org/W2049073556","https://openalex.org/W2059575958","https://openalex.org/W2066277072","https://openalex.org/W2067370481","https://openalex.org/W2083991698","https://openalex.org/W2094974204","https://openalex.org/W2097508937","https://openalex.org/W2109272824","https://openalex.org/W2120943950","https://openalex.org/W2125227861","https://openalex.org/W2126920781","https://openalex.org/W2130072301","https://openalex.org/W2138420488","https://openalex.org/W2143401113","https://openalex.org/W2144791381","https://openalex.org/W2159080219","https://openalex.org/W2166559705","https://openalex.org/W2172186225","https://openalex.org/W2397866408","https://openalex.org/W2605522404","https://openalex.org/W2963762120","https://openalex.org/W3133236490","https://openalex.org/W4250143236","https://openalex.org/W4285719527","https://openalex.org/W4299515571","https://openalex.org/W4299670631","https://openalex.org/W8020788","https://openalex.org/W80627272","https://openalex.org/W97652101"],"related_works":["https://openalex.org/W643788828","https://openalex.org/W4200510307","https://openalex.org/W3183113072","https://openalex.org/W3125134981","https://openalex.org/W2700330155","https://openalex.org/W2484652232","https://openalex.org/W2187019487","https://openalex.org/W2158940596","https://openalex.org/W2126934800","https://openalex.org/W1715419791"],"abstract_inverted_index":{"We":[0,46,73,104,120,143,170],"study":[1,171],"a":[2,15,24,56,60,117,126,136,180],"discovery":[3],"framework":[4],"in":[5,20,40,90,177],"which":[6],"background":[7],"knowledge":[8],"on":[9,48,184],"variables":[10],"and":[11,59,93,135,159,167],"their":[12,86],"relations":[13],"within":[14],"discourse":[16],"area":[17],"is":[18],"available":[19],"the":[21,37,49,64,68,75,83,91,94,101,123,150,172,175,185,189],"form":[22],"of":[23,44,52,66,77,79,125,174,188],"graphical":[25,35,57],"model.":[26,103],"Starting":[27],"from":[28],"an":[29,41,106,145],"initial,":[30],"hand-crafted":[31],"or":[32,140],"possibly":[33],"empty":[34],"model,":[36],"network":[38,129],"evolves":[39],"interactive":[42],"process":[43],"discovery.":[45],"focus":[47],"central":[50],"step":[51],"this":[53],"process:":[54],"given":[55,100,118],"model":[58],"database,":[61],"we":[62],"address":[63],"problem":[65],"finding":[67],"most":[69,151],"interesting":[70,152],"attribute":[71,80,112,153],"sets.":[72],"formalize":[74],"concept":[76],"interestingness":[78,115],"sets":[81,113,154],"as":[82,88],"divergence":[84],"between":[85],"behavior":[87,95],"observed":[89],"data,":[92],"that":[96,109,130,147],"can":[97],"be":[98],"explained":[99],"current":[102],"derive":[105],"exact":[107,132],"algorithm":[108,146],"finds":[110,149],"all":[111],"whose":[114],"exceeds":[116],"threshold.":[119],"then":[121],"consider":[122],"case":[124],"very":[127,137,164],"large":[128,138,165],"renders":[131],"inference":[133],"unfeasible,":[134],"database":[139],"data":[141],"stream.":[142],"devise":[144],"efficiently":[148],"with":[155],"prescribed":[156],"approximation":[157],"bound":[158],"confidence":[160],"probability,":[161],"even":[162],"for":[163],"networks":[166],"infinite":[168],"streams.":[169],"scalability":[173],"methods":[176],"controlled":[178],"experiments;":[179],"case-study":[181],"sheds":[182],"light":[183],"practical":[186],"usefulness":[187],"approach.":[190]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2125102327","counts_by_year":[{"year":2019,"cited_by_count":1},{"year":2015,"cited_by_count":6},{"year":2014,"cited_by_count":5},{"year":2013,"cited_by_count":5},{"year":2012,"cited_by_count":1}],"updated_date":"2025-04-21T00:00:18.309309","created_date":"2016-06-24"}