{"id":"https://openalex.org/W2924538968","doi":"https://doi.org/10.1007/s10579-019-09452-w","title":"Capturing and measuring thematic relatedness","display_name":"Capturing and measuring thematic relatedness","publication_year":2019,"publication_date":"2019-03-27","ids":{"openalex":"https://openalex.org/W2924538968","doi":"https://doi.org/10.1007/s10579-019-09452-w","mag":"2924538968"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10579-019-09452-w","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10579-019-09452-w.pdf","source":{"id":"https://openalex.org/S4306424877","display_name":"Language Resources and Evaluation","issn_l":"1574-020X","issn":["1574-020X","1574-0218"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319900","https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Science+Business Media","Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10579-019-09452-w.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5046545440","display_name":"Magdalena Kacmajor","orcid":"https://orcid.org/0000-0001-6843-9050"},"institutions":[],"countries":["IE"],"is_corresponding":true,"raw_author_name":"Magdalena Kacmajor","raw_affiliation_strings":["Innovation Exchange, IBM Ireland, Dublin, Ireland"],"affiliations":[{"raw_affiliation_string":"Innovation Exchange, IBM Ireland, Dublin, Ireland","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5079991004","display_name":"John D. Kelleher","orcid":"https://orcid.org/0000-0001-6462-3248"},"institutions":[{"id":"https://openalex.org/I4210144925","display_name":"Technological University Dublin","ror":"https://ror.org/04t0qbt32","country_code":"IE","type":"education","lineage":["https://openalex.org/I4210144925"]}],"countries":["IE"],"is_corresponding":false,"raw_author_name":"John D. Kelleher","raw_affiliation_strings":["ADAPT Centre and ICE Research Institute, Technological University Dublin, Dublin, Ireland"],"affiliations":[{"raw_affiliation_string":"ADAPT Centre and ICE Research Institute, Technological University Dublin, Dublin, Ireland","institution_ids":["https://openalex.org/I4210144925"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5046545440"],"corresponding_institution_ids":[],"apc_list":null,"apc_paid":null,"fwci":2.689,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":28,"citation_normalized_percentile":{"value":0.999972,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":93,"max":94},"biblio":{"volume":"54","issue":"3","first_page":"645","last_page":"682"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":0.9961,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9862,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11710","display_name":"Biomedical Text Mining and Ontologies","score":0.9854,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/thematic-map","display_name":"Thematic map","score":0.89393145},{"id":"https://openalex.org/keywords/sample","display_name":"Sample (material)","score":0.51154935}],"concepts":[{"id":"https://openalex.org/C93692415","wikidata":"https://www.wikidata.org/wiki/Q1502030","display_name":"Thematic map","level":2,"score":0.89393145},{"id":"https://openalex.org/C2779913896","wikidata":"https://www.wikidata.org/wiki/Q7063001","display_name":"Notice","level":2,"score":0.73059237},{"id":"https://openalex.org/C130318100","wikidata":"https://www.wikidata.org/wiki/Q2268914","display_name":"Semantic similarity","level":2,"score":0.6950945},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6597987},{"id":"https://openalex.org/C165696696","wikidata":"https://www.wikidata.org/wiki/Q11287","display_name":"Exploit","level":2,"score":0.5506109},{"id":"https://openalex.org/C198531522","wikidata":"https://www.wikidata.org/wiki/Q485146","display_name":"Sample (material)","level":2,"score":0.51154935},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.38200074},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.344943},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.33845502},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3381335},{"id":"https://openalex.org/C58640448","wikidata":"https://www.wikidata.org/wiki/Q42515","display_name":"Cartography","level":1,"score":0.117145866},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0965828},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C38652104","wikidata":"https://www.wikidata.org/wiki/Q3510521","display_name":"Computer security","level":1,"score":0.0},{"id":"https://openalex.org/C43617362","wikidata":"https://www.wikidata.org/wiki/Q170050","display_name":"Chromatography","level":1,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10579-019-09452-w","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10579-019-09452-w.pdf","source":{"id":"https://openalex.org/S4306424877","display_name":"Language Resources and Evaluation","issn_l":"1574-020X","issn":["1574-020X","1574-0218"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319900","https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Science+Business Media","Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10579-019-09452-w","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10579-019-09452-w.pdf","source":{"id":"https://openalex.org/S4306424877","display_name":"Language Resources and Evaluation","issn_l":"1574-020X","issn":["1574-020X","1574-0218"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319900","https://openalex.org/P4310319965"],"host_organization_lineage_names":["Springer Science+Business Media","Springer Nature"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/4","display_name":"Quality education","score":0.44}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":54,"referenced_works":["https://openalex.org/W106193021","https://openalex.org/W1241017059","https://openalex.org/W138707325","https://openalex.org/W1499253590","https://openalex.org/W1523296404","https://openalex.org/W158057341","https://openalex.org/W1614298861","https://openalex.org/W1647729745","https://openalex.org/W1854884267","https://openalex.org/W1965923765","https://openalex.org/W2010300093","https://openalex.org/W2026519308","https://openalex.org/W2035726644","https://openalex.org/W2038556684","https://openalex.org/W2038721957","https://openalex.org/W2052742452","https://openalex.org/W2058602429","https://openalex.org/W2067438047","https://openalex.org/W2070918177","https://openalex.org/W2087739686","https://openalex.org/W2093300869","https://openalex.org/W2116216716","https://openalex.org/W2117130368","https://openalex.org/W2130199334","https://openalex.org/W2130337399","https://openalex.org/W2131462252","https://openalex.org/W2136480620","https://openalex.org/W2136930489","https://openalex.org/W2137976908","https://openalex.org/W2140887277","https://openalex.org/W2142120379","https://openalex.org/W2158139315","https://openalex.org/W2158899491","https://openalex.org/W2164019165","https://openalex.org/W2164973920","https://openalex.org/W2170682101","https://openalex.org/W2188479190","https://openalex.org/W2250539671","https://openalex.org/W2251771443","https://openalex.org/W2294429012","https://openalex.org/W2378208052","https://openalex.org/W2487834738","https://openalex.org/W2534712034","https://openalex.org/W266716723","https://openalex.org/W2882319491","https://openalex.org/W2950225692","https://openalex.org/W2953332543","https://openalex.org/W3088357882","https://openalex.org/W3129857645","https://openalex.org/W4235505822","https://openalex.org/W4238503320","https://openalex.org/W4241850027","https://openalex.org/W4285719527","https://openalex.org/W810147176"],"related_works":["https://openalex.org/W4312814274","https://openalex.org/W4285370786","https://openalex.org/W3207760230","https://openalex.org/W3018282762","https://openalex.org/W2536018345","https://openalex.org/W2358353312","https://openalex.org/W2296488620","https://openalex.org/W17155033","https://openalex.org/W1590307681","https://openalex.org/W1496222301"],"abstract_inverted_index":{"In":[0,42],"this":[1],"paper":[2],"we":[3,45],"explain":[4],"the":[5,19,55,70,85,99],"difference":[6],"between":[7,98],"two":[8,29,86],"aspects":[9],"of":[10,21,54,57,61,64,72,84,88],"semantic":[11,65,89],"relatedness:":[12],"taxonomic":[13],"and":[14,38,91],"thematic":[15,26,36],"relations.":[16],"We":[17,76],"notice":[18],"lack":[20],"evaluation":[22],"tools":[23],"for":[24],"measuring":[25],"relatedness,":[27,66],"identify":[28],"datasets":[30,48],"that":[31,79,93],"can":[32],"be":[33],"recommended":[34],"as":[35],"benchmarks,":[37],"verify":[39],"them":[40],"experimentally.":[41],"further":[43],"experiments,":[44],"use":[46],"these":[47],"to":[49,69],"perform":[50],"a":[51,95],"comprehensive":[52],"analysis":[53],"performance":[56],"an":[58],"extensive":[59],"sample":[60],"computational":[62],"models":[63,78],"classified":[67],"according":[68],"sources":[71],"information":[73],"they":[74],"exploit.":[75],"report":[77],"are":[80],"best":[81],"at":[82],"each":[83],"dimensions":[87],"relatedness":[90],"those":[92],"achieve":[94],"good":[96],"balance":[97],"two.":[100]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2924538968","counts_by_year":[{"year":2024,"cited_by_count":4},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":5},{"year":2020,"cited_by_count":5},{"year":2019,"cited_by_count":3}],"updated_date":"2025-01-04T15:41:17.189297","created_date":"2019-04-01"}