{"id":"https://openalex.org/W3041503331","doi":"https://doi.org/10.1007/s10489-022-04383-6","title":"T-norms driven loss functions for machine learning","display_name":"T-norms driven loss functions for machine learning","publication_year":2023,"publication_date":"2023-02-09","ids":{"openalex":"https://openalex.org/W3041503331","doi":"https://doi.org/10.1007/s10489-022-04383-6","mag":"3041503331"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10489-022-04383-6","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10489-022-04383-6.pdf","source":{"id":"https://openalex.org/S74726891","display_name":"Applied Intelligence","issn_l":"0924-669X","issn":["0924-669X","1573-7497"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["arxiv","crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10489-022-04383-6.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5058772124","display_name":"Francesco Giannini","orcid":"https://orcid.org/0000-0001-8492-8110"},"institutions":[{"id":"https://openalex.org/I4210152452","display_name":"Consorzio Interuniversitario Nazionale per l'Informatica","ror":"https://ror.org/03v8v5y65","country_code":"IT","type":"facility","lineage":["https://openalex.org/I4210152452"]}],"countries":["IT"],"is_corresponding":true,"raw_author_name":"Francesco Giannini","raw_affiliation_strings":["Consorzio Interuniversitario Nazionale per l\u2019Informatica, CINI, Roma (Rome), Italy"],"affiliations":[{"raw_affiliation_string":"Consorzio Interuniversitario Nazionale per l\u2019Informatica, CINI, Roma (Rome), Italy","institution_ids":["https://openalex.org/I4210152452"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5109267259","display_name":"Michelangelo Diligenti","orcid":null},"institutions":[{"id":"https://openalex.org/I102064193","display_name":"University of Siena","ror":"https://ror.org/01tevnk56","country_code":"IT","type":"education","lineage":["https://openalex.org/I102064193"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Michelangelo Diligenti","raw_affiliation_strings":["Department of Information Engineering and Science, University of Siena, Siena, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering and Science, University of Siena, Siena, Italy","institution_ids":["https://openalex.org/I102064193"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5080411641","display_name":"Marco Maggini","orcid":"https://orcid.org/0000-0002-6428-1265"},"institutions":[{"id":"https://openalex.org/I102064193","display_name":"University of Siena","ror":"https://ror.org/01tevnk56","country_code":"IT","type":"education","lineage":["https://openalex.org/I102064193"]}],"countries":["IT"],"is_corresponding":false,"raw_author_name":"Marco Maggini","raw_affiliation_strings":["Department of Information Engineering and Science, University of Siena, Siena, Italy"],"affiliations":[{"raw_affiliation_string":"Department of Information Engineering and Science, University of Siena, Siena, Italy","institution_ids":["https://openalex.org/I102064193"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5022658803","display_name":"Marco Gori","orcid":"https://orcid.org/0000-0001-6337-5430"},"institutions":[{"id":"https://openalex.org/I201841394","display_name":"Universit\u00e9 C\u00f4te d'Azur","ror":"https://ror.org/019tgvf94","country_code":"FR","type":"education","lineage":["https://openalex.org/I201841394"]},{"id":"https://openalex.org/I1294671590","display_name":"Centre National de la Recherche Scientifique","ror":"https://ror.org/02feahw73","country_code":"FR","type":"government","lineage":["https://openalex.org/I1294671590"]}],"countries":["FR"],"is_corresponding":false,"raw_author_name":"Marco Gori","raw_affiliation_strings":["Maasai, Inria, I3S, CNRS, Universit\u00ea C\u00f4te d\u2019Azur, Nice, France"],"affiliations":[{"raw_affiliation_string":"Maasai, Inria, I3S, CNRS, Universit\u00ea C\u00f4te d\u2019Azur, Nice, France","institution_ids":["https://openalex.org/I201841394","https://openalex.org/I1294671590"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5005466305","display_name":"Giuseppe Marra","orcid":"https://orcid.org/0000-0001-5940-9562"},"institutions":[{"id":"https://openalex.org/I99464096","display_name":"KU Leuven","ror":"https://ror.org/05f950310","country_code":"BE","type":"education","lineage":["https://openalex.org/I99464096"]}],"countries":["BE"],"is_corresponding":false,"raw_author_name":"Giuseppe Marra","raw_affiliation_strings":["Department of Computer Science, KU Leuven, Leuven, Belgium"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, KU Leuven, Leuven, Belgium","institution_ids":["https://openalex.org/I99464096"]}]}],"institution_assertions":[],"countries_distinct_count":3,"institutions_distinct_count":5,"corresponding_author_ids":["https://openalex.org/A5058772124"],"corresponding_institution_ids":["https://openalex.org/I4210152452"],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"fwci":2.114,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":6,"citation_normalized_percentile":{"value":0.999976,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"53","issue":"15","first_page":"18775","last_page":"18789"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9982,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10820","display_name":"Fuzzy Logic and Control Systems","score":0.9973,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12254","display_name":"Machine Learning in Bioinformatics","score":0.9932,"subfield":{"id":"https://openalex.org/subfields/1312","display_name":"Molecular Biology"},"field":{"id":"https://openalex.org/fields/13","display_name":"Biochemistry, Genetics and Molecular Biology"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/cross-entropy","display_name":"Cross entropy","score":0.46975684}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.7873076},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4961956},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.49357712},{"id":"https://openalex.org/C202615002","wikidata":"https://www.wikidata.org/wiki/Q783507","display_name":"Differentiable function","level":2,"score":0.478808},{"id":"https://openalex.org/C167981619","wikidata":"https://www.wikidata.org/wiki/Q1685498","display_name":"Cross entropy","level":3,"score":0.46975684},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.33985353},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.32685536},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.16813809},{"id":"https://openalex.org/C9679016","wikidata":"https://www.wikidata.org/wiki/Q1417473","display_name":"Principle of maximum entropy","level":2,"score":0.09848076},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0}],"mesh":[],"locations_count":3,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10489-022-04383-6","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10489-022-04383-6.pdf","source":{"id":"https://openalex.org/S74726891","display_name":"Applied Intelligence","issn_l":"0924-669X","issn":["0924-669X","1573-7497"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1907.11468","pdf_url":"https://arxiv.org/pdf/1907.11468","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://hdl.handle.net/11365/1236814","pdf_url":"https://usiena-air.unisi.it/bitstream/11365/1236814/1/s10489-022-04383-6.pdf","source":{"id":"https://openalex.org/S4377196319","display_name":"Use Siena air (University of Siena)","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":"https://openalex.org/I102064193","host_organization_name":"University of Siena","host_organization_lineage":["https://openalex.org/I102064193"],"host_organization_lineage_names":["University of Siena"],"type":"repository"},"license":null,"license_id":null,"version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10489-022-04383-6","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10489-022-04383-6.pdf","source":{"id":"https://openalex.org/S74726891","display_name":"Applied Intelligence","issn_l":"0924-669X","issn":["0924-669X","1573-7497"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320321730","funder_display_name":"Fonds Wetenschappelijk Onderzoek","award_id":"1239422N"},{"funder":"https://openalex.org/F4320335254","funder_display_name":"Horizon 2020","award_id":"952215"}],"datasets":[],"versions":[],"referenced_works_count":52,"referenced_works":["https://openalex.org/W1545139845","https://openalex.org/W1908728294","https://openalex.org/W1974828628","https://openalex.org/W1977970897","https://openalex.org/W1986180896","https://openalex.org/W1994525828","https://openalex.org/W1994940238","https://openalex.org/W1996991494","https://openalex.org/W1997196510","https://openalex.org/W2084643922","https://openalex.org/W2104290444","https://openalex.org/W2110182592","https://openalex.org/W2111141597","https://openalex.org/W2121250409","https://openalex.org/W2135209143","https://openalex.org/W2153959628","https://openalex.org/W2201744460","https://openalex.org/W2250322043","https://openalex.org/W2320648065","https://openalex.org/W2326267538","https://openalex.org/W2402144811","https://openalex.org/W2427182019","https://openalex.org/W2582782137","https://openalex.org/W2621167405","https://openalex.org/W2761434131","https://openalex.org/W2767656849","https://openalex.org/W2808243688","https://openalex.org/W2808610674","https://openalex.org/W2883247880","https://openalex.org/W2886231181","https://openalex.org/W2892114952","https://openalex.org/W2908522859","https://openalex.org/W2912854851","https://openalex.org/W2919115771","https://openalex.org/W2963277062","https://openalex.org/W2963572185","https://openalex.org/W2963737801","https://openalex.org/W2964031560","https://openalex.org/W2964121744","https://openalex.org/W2965972931","https://openalex.org/W3014089210","https://openalex.org/W3014730532","https://openalex.org/W3032136009","https://openalex.org/W3035841787","https://openalex.org/W3042107226","https://openalex.org/W3090317370","https://openalex.org/W3205663647","https://openalex.org/W3216178672","https://openalex.org/W4205348645","https://openalex.org/W4206078757","https://openalex.org/W4206403994","https://openalex.org/W4300999134"],"related_works":["https://openalex.org/W4327738859","https://openalex.org/W4286826125","https://openalex.org/W4285277090","https://openalex.org/W3181683615","https://openalex.org/W2348722996","https://openalex.org/W2334570605","https://openalex.org/W2073681303","https://openalex.org/W2051487156","https://openalex.org/W1980454230","https://openalex.org/W1633485514"],"abstract_inverted_index":{"Abstract":[0],"Injecting":[1],"prior":[2,69],"knowledge":[3,70,131,188],"into":[4,79],"the":[5,15,21,28,35,53,68,77,99,102,106,114,129,133,141,150,165,174,179,182,186,198,202,214,224,229],"learning":[6,134,176],"process":[7],"of":[8,14,30,34,38,52,55,66,82,101,116,149,181,204,207],"a":[9,49,61,80,87,117,125,146],"neural":[10],"architecture":[11],"is":[12,41],"one":[13],"main":[16,36],"challenges":[17],"currently":[18],"faced":[19],"by":[20,85,113,193],"artificial":[22],"intelligence":[23],"community,":[24],"which":[25,154,210],"also":[26],"motivated":[27],"emergence":[29],"neural-symbolic":[31,194],"models.":[32],"One":[33],"advantages":[37,180],"these":[39],"approaches":[40,225],"their":[42],"capacity":[43],"to":[44,138,158,163,185,217,219],"learn":[45],"competitive":[46],"solutions":[47],"with":[48,98],"significant":[50],"reduction":[51],"amount":[54],"supervised":[56,139],"data.":[57],"In":[58,196],"this":[59,95],"regard,":[60],"commonly":[62],"adopted":[63],"solution":[64],"consists":[65],"representing":[67],"via":[71],"first-order":[72],"logic":[73,130],"formulas,":[74],"then":[75],"relaxing":[76],"formulas":[78],"set":[81],"differentiable":[83],"constraints":[84],"using":[86],"t-norm":[88,118],"fuzzy":[89],"logic.":[90],"This":[91],"paper":[92],"shows":[93],"that":[94,189],"relaxation,":[96],"together":[97],"choice":[100],"penalty":[103],"terms":[104],"enforcing":[105],"constraint":[107],"satisfaction,":[108],"can":[109,190],"be":[110,191],"unambiguously":[111],"determined":[112],"selection":[115],"generator,":[119],"providing":[120],"numerical":[121],"simplification":[122],"properties":[123],"and":[124,132,162],"tighter":[126],"integration":[127],"between":[128],"objective.":[135],"When":[136],"restricted":[137],"learning,":[140],"presented":[142,199],"theoretical":[143],"framework":[144],"provides":[145],"straight":[147],"derivation":[148],"popular":[151],"cross-entropy":[152,183],"loss,":[153],"has":[155],"been":[156],"shown":[157,212],"provide":[159],"faster":[160,220],"convergence":[161,221],"reduce":[164],"vanishing":[166],"gradient":[167],"problem":[168],"in":[169,213,228],"very":[170],"deep":[171],"structures.":[172],"However,":[173],"proposed":[175,227],"formulation":[177],"extends":[178],"loss":[184,208],"general":[187],"represented":[192],"methods.":[195],"addition,":[197],"methodology":[200],"allows":[201],"development":[203],"novel":[205],"classes":[206],"functions,":[209],"are":[211],"experimental":[215],"results":[216],"lead":[218],"rates":[222],"than":[223],"previously":[226],"literature.":[230]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3041503331","counts_by_year":[{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":3}],"updated_date":"2025-01-05T12:10:44.675354","created_date":"2020-07-16"}