{"id":"https://openalex.org/W3156190193","doi":"https://doi.org/10.1007/s10208-022-09550-2","title":"Affine-Invariant Ensemble Transform Methods for Logistic Regression","display_name":"Affine-Invariant Ensemble Transform Methods for Logistic Regression","publication_year":2022,"publication_date":"2022-01-21","ids":{"openalex":"https://openalex.org/W3156190193","doi":"https://doi.org/10.1007/s10208-022-09550-2","mag":"3156190193"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10208-022-09550-2","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10208-022-09550-2.pdf","source":{"id":"https://openalex.org/S151639445","display_name":"Foundations of Computational Mathematics","issn_l":"1615-3375","issn":["1615-3375","1615-3383"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s10208-022-09550-2.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5081278202","display_name":"Jakiw Pidstrigach","orcid":null},"institutions":[{"id":"https://openalex.org/I176453806","display_name":"University of Potsdam","ror":"https://ror.org/03bnmw459","country_code":"DE","type":"funder","lineage":["https://openalex.org/I176453806"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Jakiw Pidstrigach","raw_affiliation_strings":["Institut f\u00fcr Mathematik, Universit\u00e4t Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany"],"affiliations":[{"raw_affiliation_string":"Institut f\u00fcr Mathematik, Universit\u00e4t Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany","institution_ids":["https://openalex.org/I176453806"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5020753959","display_name":"Sebastian Reich","orcid":"https://orcid.org/0000-0002-5336-8904"},"institutions":[{"id":"https://openalex.org/I176453806","display_name":"University of Potsdam","ror":"https://ror.org/03bnmw459","country_code":"DE","type":"funder","lineage":["https://openalex.org/I176453806"]}],"countries":["DE"],"is_corresponding":false,"raw_author_name":"Sebastian Reich","raw_affiliation_strings":["Institut f\u00fcr Mathematik, Universit\u00e4t Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany"],"affiliations":[{"raw_affiliation_string":"Institut f\u00fcr Mathematik, Universit\u00e4t Potsdam, Karl-Liebknecht-Str. 24/25, 14476, Potsdam, Germany","institution_ids":["https://openalex.org/I176453806"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990},"fwci":1.546,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":13,"citation_normalized_percentile":{"value":0.999972,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"23","issue":"2","first_page":"675","last_page":"708"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12814","display_name":"Gaussian Processes and Bayesian Inference","score":0.9937,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9906,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12261","display_name":"Statistical Mechanics and Entropy","score":0.9894,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/stochastic-gradient-descent","display_name":"Stochastic Gradient Descent","score":0.53786546}],"concepts":[{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.7293236},{"id":"https://openalex.org/C92757383","wikidata":"https://www.wikidata.org/wiki/Q382497","display_name":"Affine transformation","level":2,"score":0.599023},{"id":"https://openalex.org/C206688291","wikidata":"https://www.wikidata.org/wiki/Q7617819","display_name":"Stochastic gradient descent","level":3,"score":0.53786546},{"id":"https://openalex.org/C52421305","wikidata":"https://www.wikidata.org/wiki/Q1151499","display_name":"Particle filter","level":3,"score":0.5064832},{"id":"https://openalex.org/C153258448","wikidata":"https://www.wikidata.org/wiki/Q1199743","display_name":"Gradient descent","level":3,"score":0.49331656},{"id":"https://openalex.org/C28826006","wikidata":"https://www.wikidata.org/wiki/Q33521","display_name":"Applied mathematics","level":1,"score":0.42634353},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.40114403},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.39410055},{"id":"https://openalex.org/C157286648","wikidata":"https://www.wikidata.org/wiki/Q846780","display_name":"Kalman filter","level":2,"score":0.33981135},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.3356698},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.23332095},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.21936443},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.15596634},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10208-022-09550-2","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10208-022-09550-2.pdf","source":{"id":"https://openalex.org/S151639445","display_name":"Foundations of Computational Mathematics","issn_l":"1615-3375","issn":["1615-3375","1615-3383"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s10208-022-09550-2","pdf_url":"https://link.springer.com/content/pdf/10.1007/s10208-022-09550-2.pdf","source":{"id":"https://openalex.org/S151639445","display_name":"Foundations of Computational Mathematics","issn_l":"1615-3375","issn":["1615-3375","1615-3383"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320322480","funder_display_name":"Universit\u00e4t Potsdam","award_id":null}],"datasets":[],"versions":[],"referenced_works_count":40,"referenced_works":["https://openalex.org/W1029488735","https://openalex.org/W1522319528","https://openalex.org/W1549777868","https://openalex.org/W163742544","https://openalex.org/W1663973292","https://openalex.org/W2002594585","https://openalex.org/W2004247736","https://openalex.org/W2006028648","https://openalex.org/W2009086942","https://openalex.org/W2025179796","https://openalex.org/W2041750361","https://openalex.org/W2058490559","https://openalex.org/W2066601679","https://openalex.org/W2095705004","https://openalex.org/W2101687185","https://openalex.org/W2129193920","https://openalex.org/W2135754890","https://openalex.org/W2141793816","https://openalex.org/W2152869421","https://openalex.org/W2154047075","https://openalex.org/W2303654018","https://openalex.org/W2496856922","https://openalex.org/W288458174","https://openalex.org/W2887480292","https://openalex.org/W2912322140","https://openalex.org/W2962885101","https://openalex.org/W2963912410","https://openalex.org/W2970217468","https://openalex.org/W2995768639","https://openalex.org/W3005085468","https://openalex.org/W3042776612","https://openalex.org/W3043265588","https://openalex.org/W3048753330","https://openalex.org/W3106453976","https://openalex.org/W3126781576","https://openalex.org/W3158386662","https://openalex.org/W3175639804","https://openalex.org/W3183420805","https://openalex.org/W4211177544","https://openalex.org/W4231204432"],"related_works":["https://openalex.org/W4366280654","https://openalex.org/W4362706668","https://openalex.org/W4253883008","https://openalex.org/W4252024964","https://openalex.org/W4231621013","https://openalex.org/W4206903459","https://openalex.org/W3160167280","https://openalex.org/W3020853991","https://openalex.org/W2895097035","https://openalex.org/W2754816816"],"abstract_inverted_index":{"Abstract":[0],"We":[1,95],"investigate":[2],"the":[3,23,29,34,65,82,117,120],"application":[4],"of":[5,12,22,77,91,119],"ensemble":[6,25],"transform":[7],"approaches":[8],"to":[9,33,47,89],"Bayesian":[10,48],"inference":[11],"logistic":[13,79],"regression":[14,80],"problems.":[15],"Our":[16],"approach":[17,46],"relies":[18],"on":[19,42],"appropriate":[20],"extensions":[21],"popular":[24],"Kalman":[26],"filter":[27,32],"and":[28,39,81,108],"feedback":[30],"particle":[31,53],"cross":[35],"entropy":[36],"loss":[37],"function":[38],"is":[40,106],"based":[41],"a":[43,72,98],"well-established":[44],"homotopy":[45],"inference.":[49],"The":[50],"arising":[51],"finite":[52],"evolution":[54],"equations":[55],"as":[56,58],"well":[57],"their":[59],"mean-field":[60],"limits":[61],"are":[62],"affine-invariant.":[63],"Furthermore,":[64],"proposed":[66,121],"methods":[67],"can":[68,84,109],"be":[69,85,111],"implemented":[70],"in":[71,75],"gradient-free":[73],"manner":[74],"case":[76],"nonlinear":[78],"data":[83],"randomly":[86],"subsampled":[87],"similar":[88],"mini-batching":[90],"stochastic":[92],"gradient":[93],"descent.":[94],"also":[96],"propose":[97],"closely":[99],"related":[100],"SDE-based":[101],"sampling":[102],"method":[103],"which":[104],"again":[105],"affine-invariant":[107],"easily":[110],"made":[112],"gradient-free.":[113],"Numerical":[114],"examples":[115],"demonstrate":[116],"appropriateness":[118],"methodologies.":[122]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3156190193","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":3},{"year":2023,"cited_by_count":4},{"year":2022,"cited_by_count":3},{"year":2021,"cited_by_count":2}],"updated_date":"2025-04-30T03:33:26.825271","created_date":"2021-04-26"}