{"id":"https://openalex.org/W4385615194","doi":"https://doi.org/10.1007/s00521-023-08820-6","title":"Improving unified named entity recognition by incorporating mention relevance","display_name":"Improving unified named entity recognition by incorporating mention relevance","publication_year":2023,"publication_date":"2023-08-06","ids":{"openalex":"https://openalex.org/W4385615194","doi":"https://doi.org/10.1007/s00521-023-08820-6"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s00521-023-08820-6","pdf_url":"https://link.springer.com/content/pdf/10.1007/s00521-023-08820-6.pdf","source":{"id":"https://openalex.org/S147897268","display_name":"Neural Computing and Applications","issn_l":"0941-0643","issn":["0941-0643","1433-3058"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s00521-023-08820-6.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5027406081","display_name":"Lijun Ji","orcid":"https://orcid.org/0000-0002-8709-8623"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Lijun Ji","raw_affiliation_strings":["State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101573676","display_name":"Danfeng Yan","orcid":"https://orcid.org/0000-0002-6553-3444"},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Danfeng Yan","raw_affiliation_strings":["State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052364647","display_name":"Zhuoran Cheng","orcid":null},"institutions":[{"id":"https://openalex.org/I139759216","display_name":"Beijing University of Posts and Telecommunications","ror":"https://ror.org/04w9fbh59","country_code":"CN","type":"funder","lineage":["https://openalex.org/I139759216"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhuoran Cheng","raw_affiliation_strings":["State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China"],"affiliations":[{"raw_affiliation_string":"State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing, China","institution_ids":["https://openalex.org/I139759216"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100381754","display_name":"Yan Song","orcid":"https://orcid.org/0000-0002-2849-2962"},"institutions":[{"id":"https://openalex.org/I11406153","display_name":"Shanghai International Studies University","ror":"https://ror.org/01bn89z48","country_code":"CN","type":"education","lineage":["https://openalex.org/I11406153"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Yan Song","raw_affiliation_strings":["School of Business and Management, Shanghai International Studies University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Business and Management, Shanghai International Studies University, Shanghai, China","institution_ids":["https://openalex.org/I11406153"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5101573676","https://openalex.org/A5100381754"],"corresponding_institution_ids":["https://openalex.org/I139759216","https://openalex.org/I11406153"],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990},"fwci":0.569,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":2,"citation_normalized_percentile":{"value":0.796876,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":76,"max":82},"biblio":{"volume":"35","issue":"30","first_page":"22223","last_page":"22234"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Topic Modeling","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Natural Language Processing Techniques","score":0.9989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11273","display_name":"Advanced Graph Neural Networks","score":0.989,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/relevance","display_name":"Relevance","score":0.7860049},{"id":"https://openalex.org/keywords/generality","display_name":"Generality","score":0.7762839},{"id":"https://openalex.org/keywords/named-entity-recognition","display_name":"Named Entity Recognition","score":0.70943683},{"id":"https://openalex.org/keywords/sequence","display_name":"Sequence (biology)","score":0.5855199},{"id":"https://openalex.org/keywords/encode","display_name":"ENCODE","score":0.47816}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.85738754},{"id":"https://openalex.org/C158154518","wikidata":"https://www.wikidata.org/wiki/Q7310970","display_name":"Relevance (law)","level":2,"score":0.7860049},{"id":"https://openalex.org/C2780767217","wikidata":"https://www.wikidata.org/wiki/Q5532421","display_name":"Generality","level":2,"score":0.7762839},{"id":"https://openalex.org/C2779135771","wikidata":"https://www.wikidata.org/wiki/Q403574","display_name":"Named-entity recognition","level":3,"score":0.70943683},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.6889885},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6467705},{"id":"https://openalex.org/C44291984","wikidata":"https://www.wikidata.org/wiki/Q1074173","display_name":"Question answering","level":2,"score":0.64592534},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.61328137},{"id":"https://openalex.org/C2778112365","wikidata":"https://www.wikidata.org/wiki/Q3511065","display_name":"Sequence (biology)","level":2,"score":0.5855199},{"id":"https://openalex.org/C554936623","wikidata":"https://www.wikidata.org/wiki/Q199657","display_name":"Reading (process)","level":2,"score":0.5760667},{"id":"https://openalex.org/C66746571","wikidata":"https://www.wikidata.org/wiki/Q1134833","display_name":"ENCODE","level":3,"score":0.47816},{"id":"https://openalex.org/C511192102","wikidata":"https://www.wikidata.org/wiki/Q5156948","display_name":"Comprehension","level":2,"score":0.42302176},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.122072786},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.066244334},{"id":"https://openalex.org/C15744967","wikidata":"https://www.wikidata.org/wiki/Q9418","display_name":"Psychology","level":0,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C55493867","wikidata":"https://www.wikidata.org/wiki/Q7094","display_name":"Biochemistry","level":1,"score":0.0},{"id":"https://openalex.org/C185592680","wikidata":"https://www.wikidata.org/wiki/Q2329","display_name":"Chemistry","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C86803240","wikidata":"https://www.wikidata.org/wiki/Q420","display_name":"Biology","level":0,"score":0.0},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C104317684","wikidata":"https://www.wikidata.org/wiki/Q7187","display_name":"Gene","level":2,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C542102704","wikidata":"https://www.wikidata.org/wiki/Q183257","display_name":"Psychotherapist","level":1,"score":0.0},{"id":"https://openalex.org/C54355233","wikidata":"https://www.wikidata.org/wiki/Q7162","display_name":"Genetics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s00521-023-08820-6","pdf_url":"https://link.springer.com/content/pdf/10.1007/s00521-023-08820-6.pdf","source":{"id":"https://openalex.org/S147897268","display_name":"Neural Computing and Applications","issn_l":"0941-0643","issn":["0941-0643","1433-3058"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s00521-023-08820-6","pdf_url":"https://link.springer.com/content/pdf/10.1007/s00521-023-08820-6.pdf","source":{"id":"https://openalex.org/S147897268","display_name":"Neural Computing and Applications","issn_l":"0941-0643","issn":["0941-0643","1433-3058"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"score":0.86,"display_name":"Quality education","id":"https://metadata.un.org/sdg/4"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":29,"referenced_works":["https://openalex.org/W2108218871","https://openalex.org/W2123512824","https://openalex.org/W2163107094","https://openalex.org/W2250710764","https://openalex.org/W2606974598","https://openalex.org/W2756381707","https://openalex.org/W2803609931","https://openalex.org/W2804221886","https://openalex.org/W2935052563","https://openalex.org/W2952594430","https://openalex.org/W2962739339","https://openalex.org/W2962902328","https://openalex.org/W2963208801","https://openalex.org/W2963341956","https://openalex.org/W2963568202","https://openalex.org/W2963625095","https://openalex.org/W2971064981","https://openalex.org/W2986836624","https://openalex.org/W3023337184","https://openalex.org/W3034328552","https://openalex.org/W3034744126","https://openalex.org/W3035375600","https://openalex.org/W3035625205","https://openalex.org/W3173395064","https://openalex.org/W3175225269","https://openalex.org/W3175562427","https://openalex.org/W3176489198","https://openalex.org/W3176971429","https://openalex.org/W3198957374"],"related_works":["https://openalex.org/W4381094582","https://openalex.org/W2604144356","https://openalex.org/W2369625323","https://openalex.org/W2364579609","https://openalex.org/W2201908702","https://openalex.org/W2167202928","https://openalex.org/W2045049461","https://openalex.org/W1978893398","https://openalex.org/W1977906818","https://openalex.org/W173870552"],"abstract_inverted_index":{"Abstract":[0],"Named":[1],"entity":[2,36,93],"recognition":[3,37],"(NER)":[4],"is":[5,65],"a":[6,60,100,158],"fundamental":[7],"task":[8],"for":[9],"natural":[10],"language":[11],"processing,":[12],"which":[13],"aims":[14],"to":[15,86,103,113,136],"detect":[16],"mentions":[17],"of":[18,67,108,133,140,161],"real-world":[19],"entities":[20,73],"from":[21],"text":[22],"and":[23,33,52,71,170],"classifying":[24],"them":[25],"into":[26,122],"predefined":[27],"types.":[28],"Recently,":[29],"research":[30],"on":[31,75,130,168],"overlapped":[32,51,70,169],"discontinuous":[34,53,72,171],"named":[35],"has":[38],"received":[39],"increasing":[40],"attention.":[41],"However,":[42],"we":[43,58,117],"note":[44],"that":[45,64,147],"few":[46],"studies":[47],"have":[48],"considered":[49],"both":[50,69],"entities.":[54],"In":[55],"this":[56],"paper,":[57],"proposed":[59],"novel":[61],"sequence-to-sequence":[62],"model":[63,80,102,149],"capable":[66],"recognizing":[68],"based":[74],"machine":[76,82],"reading":[77,83],"comprehension.":[78],"The":[79,143],"utilizes":[81],"comprehension":[84],"formulation":[85],"encode":[87],"significant":[88],"inferior":[89],"information":[90],"about":[91],"the":[92,105,109,114,119,123,138,153],"category.":[94],"Then":[95],"input":[96],"sequence":[97],"passes":[98],"through":[99],"question-answering":[101],"predict":[104],"mention":[106,120],"relevance":[107,121],"given":[110],"source":[111],"sentences":[112],"query.":[115],"Finally,":[116],"incorporate":[118],"BART-based":[124],"generation":[125],"model.":[126,142],"We":[127],"conducted":[128],"experiments":[129],"three":[131],"type":[132],"NER":[134,172],"datasets":[135],"show":[137],"generality":[139],"our":[141,148],"experimental":[144],"results":[145],"demonstrate":[146],"beats":[150],"almost":[151],"all":[152],"current":[154,165],"top-performing":[155],"baselines":[156],"achieves":[157],"vast":[159],"amount":[160],"performance":[162],"boost":[163],"over":[164],"SOTA":[166],"models":[167],"datasets.":[173]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4385615194","counts_by_year":[{"year":2025,"cited_by_count":1},{"year":2024,"cited_by_count":1}],"updated_date":"2025-04-05T00:53:55.620499","created_date":"2023-08-07"}