{"id":"https://openalex.org/W3183906975","doi":"https://doi.org/10.1007/s00521-021-06304-z","title":"Prediction of the critical temperature of a superconductor by using the WOA/MARS, Ridge, Lasso and Elastic-net machine learning techniques","display_name":"Prediction of the critical temperature of a superconductor by using the WOA/MARS, Ridge, Lasso and Elastic-net machine learning techniques","publication_year":2021,"publication_date":"2021-07-20","ids":{"openalex":"https://openalex.org/W3183906975","doi":"https://doi.org/10.1007/s00521-021-06304-z","mag":"3183906975"},"language":"en","primary_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s00521-021-06304-z","pdf_url":"https://link.springer.com/content/pdf/10.1007/s00521-021-06304-z.pdf","source":{"id":"https://openalex.org/S147897268","display_name":"Neural Computing and Applications","issn_l":"0941-0643","issn":["0941-0643","1433-3058"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"hybrid","oa_url":"https://link.springer.com/content/pdf/10.1007/s00521-021-06304-z.pdf","any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5038228277","display_name":"P.J. Garc\u0131\u0301a Nieto","orcid":"https://orcid.org/0000-0001-8880-6348"},"institutions":[{"id":"https://openalex.org/I165339363","display_name":"Universidad de Oviedo","ror":"https://ror.org/006gksa02","country_code":"ES","type":"education","lineage":["https://openalex.org/I165339363"]}],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Paulino Jos\u00e9 Garc\u00eda-Nieto","raw_affiliation_strings":["Department of Mathematics, Faculty of Sciences, University of Oviedo, 33007, Oviedo, Spain"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, Faculty of Sciences, University of Oviedo, 33007, Oviedo, Spain","institution_ids":["https://openalex.org/I165339363"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5036495170","display_name":"Esperanza Garc\u00eda\u2013Gonzalo","orcid":"https://orcid.org/0000-0002-3194-4448"},"institutions":[{"id":"https://openalex.org/I165339363","display_name":"Universidad de Oviedo","ror":"https://ror.org/006gksa02","country_code":"ES","type":"education","lineage":["https://openalex.org/I165339363"]}],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Esperanza Garc\u00eda-Gonzalo","raw_affiliation_strings":["Department of Mathematics, Faculty of Sciences, University of Oviedo, 33007, Oviedo, Spain"],"affiliations":[{"raw_affiliation_string":"Department of Mathematics, Faculty of Sciences, University of Oviedo, 33007, Oviedo, Spain","institution_ids":["https://openalex.org/I165339363"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5025913645","display_name":"Jos\u00e9 P. Paredes\u2013S\u00e1nchez","orcid":"https://orcid.org/0000-0002-1065-904X"},"institutions":[{"id":"https://openalex.org/I165339363","display_name":"Universidad de Oviedo","ror":"https://ror.org/006gksa02","country_code":"ES","type":"education","lineage":["https://openalex.org/I165339363"]}],"countries":["ES"],"is_corresponding":false,"raw_author_name":"Jos\u00e9 Pablo Paredes-S\u00e1nchez","raw_affiliation_strings":["Department of Energy, College of Mining, Energy and Materials Engineering, University of Oviedo, 33004, Oviedo, Spain"],"affiliations":[{"raw_affiliation_string":"Department of Energy, College of Mining, Energy and Materials Engineering, University of Oviedo, 33004, Oviedo, Spain","institution_ids":["https://openalex.org/I165339363"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"apc_paid":{"value":2390,"currency":"EUR","value_usd":2990,"provenance":"doaj"},"fwci":3.27,"has_fulltext":true,"fulltext_origin":"pdf","cited_by_count":46,"citation_normalized_percentile":{"value":0.999972,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":97,"max":98},"biblio":{"volume":"33","issue":"24","first_page":"17131","last_page":"17145"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11948","display_name":"Machine Learning in Materials Science","score":0.9988,"subfield":{"id":"https://openalex.org/subfields/2505","display_name":"Materials Chemistry"},"field":{"id":"https://openalex.org/fields/25","display_name":"Materials Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12169","display_name":"Non-Destructive Testing Techniques","score":0.9758,"subfield":{"id":"https://openalex.org/subfields/2210","display_name":"Mechanical Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11052","display_name":"Energy Load and Power Forecasting","score":0.9184,"subfield":{"id":"https://openalex.org/subfields/2208","display_name":"Electrical and Electronic Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/elastic-net-regularization","display_name":"Elastic net regularization","score":0.8195702}],"concepts":[{"id":"https://openalex.org/C83260615","wikidata":"https://www.wikidata.org/wiki/Q6773121","display_name":"Mars Exploration Program","level":2,"score":0.8729572},{"id":"https://openalex.org/C203868755","wikidata":"https://www.wikidata.org/wiki/Q5353562","display_name":"Elastic net regularization","level":3,"score":0.8195702},{"id":"https://openalex.org/C44882253","wikidata":"https://www.wikidata.org/wiki/Q3455882","display_name":"Multivariate adaptive regression splines","level":4,"score":0.57319856},{"id":"https://openalex.org/C32277403","wikidata":"https://www.wikidata.org/wiki/Q740445","display_name":"Ridge","level":2,"score":0.5485627},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.54614323},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.47726506},{"id":"https://openalex.org/C83546350","wikidata":"https://www.wikidata.org/wiki/Q1139051","display_name":"Regression","level":2,"score":0.43913913},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.4361778},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.42817315},{"id":"https://openalex.org/C192562407","wikidata":"https://www.wikidata.org/wiki/Q228736","display_name":"Materials science","level":0,"score":0.35805073},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35737523},{"id":"https://openalex.org/C152877465","wikidata":"https://www.wikidata.org/wiki/Q208042","display_name":"Regression analysis","level":2,"score":0.32105097},{"id":"https://openalex.org/C64946054","wikidata":"https://www.wikidata.org/wiki/Q4874476","display_name":"Bayesian multivariate linear regression","level":3,"score":0.29050046},{"id":"https://openalex.org/C148483581","wikidata":"https://www.wikidata.org/wiki/Q446488","display_name":"Feature selection","level":2,"score":0.25605404},{"id":"https://openalex.org/C127313418","wikidata":"https://www.wikidata.org/wiki/Q1069","display_name":"Geology","level":0,"score":0.25156134},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.23449928},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.17988947},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.12052259},{"id":"https://openalex.org/C151730666","wikidata":"https://www.wikidata.org/wiki/Q7205","display_name":"Paleontology","level":1,"score":0.0},{"id":"https://openalex.org/C1276947","wikidata":"https://www.wikidata.org/wiki/Q333","display_name":"Astronomy","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s00521-021-06304-z","pdf_url":"https://link.springer.com/content/pdf/10.1007/s00521-021-06304-z.pdf","source":{"id":"https://openalex.org/S147897268","display_name":"Neural Computing and Applications","issn_l":"0941-0643","issn":["0941-0643","1433-3058"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true}],"best_oa_location":{"is_oa":true,"landing_page_url":"https://doi.org/10.1007/s00521-021-06304-z","pdf_url":"https://link.springer.com/content/pdf/10.1007/s00521-021-06304-z.pdf","source":{"id":"https://openalex.org/S147897268","display_name":"Neural Computing and Applications","issn_l":"0941-0643","issn":["0941-0643","1433-3058"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"journal"},"license":"cc-by","license_id":"https://openalex.org/licenses/cc-by","version":"publishedVersion","is_accepted":true,"is_published":true},"sustainable_development_goals":[{"display_name":"Life below water","score":0.56,"id":"https://metadata.un.org/sdg/14"}],"grants":[{"funder":"https://openalex.org/F4320315062","funder_display_name":"Ministerio de Ciencia, Innovaci\u00f3n y Universidades","award_id":"PGC2018-098459-B-I00"},{"funder":"https://openalex.org/F4320325113","funder_display_name":"Fundaci\u00f3n para el Fomento en Asturias de la Investigaci\u00f3n Cient\u00edfica Aplicada y la Tecnolog\u00eda","award_id":"FC-GRUPIN-IDI/2018/000221"}],"datasets":[],"versions":[],"referenced_works_count":56,"referenced_works":["https://openalex.org/W1480376833","https://openalex.org/W1971714101","https://openalex.org/W1972676371","https://openalex.org/W1982298138","https://openalex.org/W2003378896","https://openalex.org/W2029871071","https://openalex.org/W2041976578","https://openalex.org/W2046059992","https://openalex.org/W2051026972","https://openalex.org/W2054359607","https://openalex.org/W2056722718","https://openalex.org/W2075891641","https://openalex.org/W2077562320","https://openalex.org/W2085819713","https://openalex.org/W2097360283","https://openalex.org/W2102201073","https://openalex.org/W2144243948","https://openalex.org/W2153689927","https://openalex.org/W2170051345","https://openalex.org/W2290883490","https://openalex.org/W2521143763","https://openalex.org/W2615198793","https://openalex.org/W2758107401","https://openalex.org/W2766830746","https://openalex.org/W2799862522","https://openalex.org/W2801895994","https://openalex.org/W2904298560","https://openalex.org/W2919972822","https://openalex.org/W2922096023","https://openalex.org/W2945771794","https://openalex.org/W2947725060","https://openalex.org/W2963798770","https://openalex.org/W2964853432","https://openalex.org/W2973775716","https://openalex.org/W2996562872","https://openalex.org/W3004718366","https://openalex.org/W3005497310","https://openalex.org/W3005735954","https://openalex.org/W3017949903","https://openalex.org/W3023169168","https://openalex.org/W3028038362","https://openalex.org/W3034253215","https://openalex.org/W3038583753","https://openalex.org/W3091922942","https://openalex.org/W3120740533","https://openalex.org/W3130055004","https://openalex.org/W3132894783","https://openalex.org/W3135084800","https://openalex.org/W3147767241","https://openalex.org/W3155861950","https://openalex.org/W3215037115","https://openalex.org/W4229499352","https://openalex.org/W4251207580","https://openalex.org/W4294541781","https://openalex.org/W568490485","https://openalex.org/W836867855"],"related_works":["https://openalex.org/W4401133862","https://openalex.org/W3148196241","https://openalex.org/W3006349334","https://openalex.org/W2371621356","https://openalex.org/W2186535538","https://openalex.org/W2185815019","https://openalex.org/W2122127011","https://openalex.org/W2055800560","https://openalex.org/W2003087713","https://openalex.org/W1606169643"],"abstract_inverted_index":{"Abstract":[0],"This":[1,40],"study":[2],"builds":[3],"a":[4,14,46,62,111],"predictive":[5],"model":[6,42],"capable":[7],"of":[8,13,21,78,101,110],"estimating":[9],"the":[10,22,29,52,68,75,82,92,102,107,124,128,142],"critical":[11,108],"temperature":[12,109],"superconductor":[15,112],"from":[16,28],"experimentally":[17],"determined":[18],"physico-chemical":[19],"properties":[20],"material":[23],"(input":[24],"variables):":[25],"features":[26],"extracted":[27],"thermal":[30],"conductivity,":[31],"atomic":[32,38],"radius,":[33],"valence,":[34],"electron":[35],"affinity":[36],"and":[37,85,131],"mass.":[39],"original":[41],"is":[43],"built":[44],"using":[45,117],"novel":[47],"hybrid":[48,120],"algorithm":[49,66,71],"relied":[50],"on":[51],"multivariate":[53],"adaptive":[54],"regression":[55,87,133],"splines":[56],"(MARS)":[57],"technique":[58],"in":[59],"combination":[60],"with":[61,127,141],"nature-inspired":[63],"meta-heuristic":[64],"optimization":[65,70],"termed":[67],"whale":[69],"(WOA)":[72],"that":[73,106],"mimics":[74],"social":[76],"behavior":[77],"humpback":[79],"whales.":[80],"Additionally,":[81],"Ridge,":[83,129],"Lasso":[84,130],"Elastic-net":[86,132],"models":[88,134],"were":[89],"fitted":[90],"to":[91],"same":[93],"experimental":[94],"data":[95],"for":[96],"comparison":[97],"purposes.":[98],"The":[99],"results":[100,125],"current":[103],"investigation":[104],"indicate":[105],"can":[113],"be":[114],"successfully":[115],"predicted":[116],"this":[118],"proposed":[119],"WOA/MARS-based":[121,143],"model.":[122,144],"Furthermore,":[123],"obtained":[126,140],"are":[135],"clearly":[136],"worse":[137],"than":[138],"those":[139]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3183906975","counts_by_year":[{"year":2024,"cited_by_count":14},{"year":2023,"cited_by_count":19},{"year":2022,"cited_by_count":8},{"year":2021,"cited_by_count":1}],"updated_date":"2024-12-26T00:14:21.659069","created_date":"2021-08-02"}