{"id":"https://openalex.org/W1500481937","doi":"https://doi.org/10.1007/978-3-540-72523-7_11","title":"An Improved Random Subspace Method and Its Application to EEG Signal Classification","display_name":"An Improved Random Subspace Method and Its Application to EEG Signal Classification","publication_year":2007,"publication_date":"2007-06-21","ids":{"openalex":"https://openalex.org/W1500481937","doi":"https://doi.org/10.1007/978-3-540-72523-7_11","mag":"1500481937"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-540-72523-7_11","pdf_url":null,"source":{"id":"https://openalex.org/S4306420566","display_name":"Multiple Classifier Systems","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5047846625","display_name":"Shiliang Sun","orcid":"https://orcid.org/0000-0001-7069-3752"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"education","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Shiliang Sun","raw_affiliation_strings":["Dept. of Comput. Sci. & Technol., East China Normal Univ., Shanghai, China#TAB#"],"affiliations":[{"raw_affiliation_string":"Dept. of Comput. Sci. & Technol., East China Normal Univ., Shanghai, China#TAB#","institution_ids":["https://openalex.org/I66867065"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5047846625"],"corresponding_institution_ids":["https://openalex.org/I66867065"],"apc_list":null,"apc_paid":null,"fwci":0.65,"has_fulltext":false,"cited_by_count":10,"citation_normalized_percentile":{"value":0.784946,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":83,"max":84},"biblio":{"volume":null,"issue":null,"first_page":"103","last_page":"112"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9936,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11447","display_name":"Blind Source Separation Techniques","score":0.9934,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10320","display_name":"Neural Networks and Applications","score":0.9919,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/ensemble-learning","display_name":"Ensemble Learning","score":0.66569734},{"id":"https://openalex.org/keywords/feature-vector","display_name":"Feature vector","score":0.47544977},{"id":"https://openalex.org/keywords/linear-classifier","display_name":"Linear classifier","score":0.44149545}],"concepts":[{"id":"https://openalex.org/C106135958","wikidata":"https://www.wikidata.org/wiki/Q7291993","display_name":"Random subspace method","level":3,"score":0.80019325},{"id":"https://openalex.org/C32834561","wikidata":"https://www.wikidata.org/wiki/Q660730","display_name":"Subspace topology","level":2,"score":0.77703905},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.68448627},{"id":"https://openalex.org/C45942800","wikidata":"https://www.wikidata.org/wiki/Q245652","display_name":"Ensemble learning","level":2,"score":0.66569734},{"id":"https://openalex.org/C183115368","wikidata":"https://www.wikidata.org/wiki/Q856577","display_name":"Weighting","level":2,"score":0.66356975},{"id":"https://openalex.org/C12362212","wikidata":"https://www.wikidata.org/wiki/Q728435","display_name":"Linear subspace","level":2,"score":0.66206074},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6569717},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.64531875},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63368434},{"id":"https://openalex.org/C95623464","wikidata":"https://www.wikidata.org/wiki/Q1096149","display_name":"Classifier (UML)","level":2,"score":0.58159506},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.49907827},{"id":"https://openalex.org/C83665646","wikidata":"https://www.wikidata.org/wiki/Q42139305","display_name":"Feature vector","level":2,"score":0.47544977},{"id":"https://openalex.org/C169258074","wikidata":"https://www.wikidata.org/wiki/Q245748","display_name":"Random forest","level":2,"score":0.44997108},{"id":"https://openalex.org/C139532973","wikidata":"https://www.wikidata.org/wiki/Q2679259","display_name":"Linear classifier","level":3,"score":0.44149545},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.26763463},{"id":"https://openalex.org/C71924100","wikidata":"https://www.wikidata.org/wiki/Q11190","display_name":"Medicine","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C126838900","wikidata":"https://www.wikidata.org/wiki/Q77604","display_name":"Radiology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-540-72523-7_11","pdf_url":null,"source":{"id":"https://openalex.org/S4306420566","display_name":"Multiple Classifier Systems","issn_l":null,"issn":null,"is_oa":false,"is_in_doaj":false,"is_core":false,"host_organization":null,"host_organization_name":null,"host_organization_lineage":[],"host_organization_lineage_names":[],"type":"conference"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":27,"referenced_works":["https://openalex.org/W1485958089","https://openalex.org/W1506281249","https://openalex.org/W1546113605","https://openalex.org/W1605688901","https://openalex.org/W1949922239","https://openalex.org/W1968602281","https://openalex.org/W1992018127","https://openalex.org/W2017337590","https://openalex.org/W2025653905","https://openalex.org/W2063128958","https://openalex.org/W2098154993","https://openalex.org/W2113242816","https://openalex.org/W2115629999","https://openalex.org/W2119479037","https://openalex.org/W2124951716","https://openalex.org/W2128073546","https://openalex.org/W2135293965","https://openalex.org/W2145673887","https://openalex.org/W2152761983","https://openalex.org/W2158275940","https://openalex.org/W2158875652","https://openalex.org/W2167055186","https://openalex.org/W2416367959","https://openalex.org/W2799061466","https://openalex.org/W2911964244","https://openalex.org/W4205687621","https://openalex.org/W4285719527"],"related_works":["https://openalex.org/W4361733484","https://openalex.org/W4256395896","https://openalex.org/W4205397888","https://openalex.org/W2770076983","https://openalex.org/W2094490861","https://openalex.org/W2057416691","https://openalex.org/W2052615004","https://openalex.org/W2046975922","https://openalex.org/W1981866886","https://openalex.org/W1760344465"],"abstract_inverted_index":{"Ensemble":[0],"learning":[1],"is":[2,74,120],"one":[3],"of":[4,12,39,48,107,116,127,136],"the":[5,10,37,45,105,117,124,133],"principal":[6],"current":[7],"directions":[8],"in":[9,103,109],"research":[11],"machine":[13],"learning.":[14],"In":[15],"this":[16,72,96,110],"paper,":[17],"subspace":[18,63,68],"ensembles":[19],"for":[20],"classification":[21,134],"are":[22,90,99],"explored":[23],"which":[24],"constitute":[25],"an":[26],"ensemble":[27,40,49],"classifier":[28,126],"system":[29],"by":[30,86],"manipulating":[31],"different":[32],"feature":[33],"subspaces.":[34],"Starting":[35],"with":[36,123],"nature":[38],"efficacy,":[41],"we":[42],"probe":[43],"into":[44],"microcosmic":[46],"meaning":[47],"diversity,":[50],"and":[51,57,98,114],"propose":[52],"to":[53,60,92,95],"use":[54],"region":[55,58,84],"partitioning":[56],"weighting":[59],"implement":[61],"effective":[62],"ensembles.":[64],"An":[65],"improved":[66],"random":[67],"method":[69,119],"that":[70],"integrates":[71],"mechanism":[73],"presented.":[75],"Individual":[76],"classifiers":[77],"possessing":[78],"eminent":[79],"performance":[80],"on":[81,132],"a":[82],"partitioned":[83],"reflected":[85],"high":[87],"neighborhood":[88],"accuracies,":[89],"deemed":[91],"contribute":[93],"largely":[94],"region,":[97],"assigned":[100],"large":[101],"weights":[102],"determining":[104],"labels":[106],"instances":[108],"area.":[111],"The":[112],"robustness":[113],"effectiveness":[115],"proposed":[118],"shown":[121],"empirically":[122],"base":[125],"linear":[128],"support":[129],"vector":[130],"machines":[131],"problem":[135],"EEG":[137],"signals.":[138]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1500481937","counts_by_year":[{"year":2021,"cited_by_count":1},{"year":2020,"cited_by_count":3},{"year":2016,"cited_by_count":1},{"year":2013,"cited_by_count":1},{"year":2012,"cited_by_count":1}],"updated_date":"2024-12-10T13:06:24.376069","created_date":"2016-06-24"}