{"id":"https://openalex.org/W2765526501","doi":"https://doi.org/10.1007/978-3-319-70093-9_89","title":"Effect of Parameter Tuning at Distinguishing Between Real and Posed Smiles from Observers\u2019 Physiological Features","display_name":"Effect of Parameter Tuning at Distinguishing Between Real and Posed Smiles from Observers\u2019 Physiological Features","publication_year":2017,"publication_date":"2017-01-01","ids":{"openalex":"https://openalex.org/W2765526501","doi":"https://doi.org/10.1007/978-3-319-70093-9_89","mag":"2765526501"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-319-70093-9_89","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5084424190","display_name":"Md Zakir Hossain","orcid":"https://orcid.org/0000-0003-1892-831X"},"institutions":[{"id":"https://openalex.org/I118347636","display_name":"Australian National University","ror":"https://ror.org/019wvm592","country_code":"AU","type":"education","lineage":["https://openalex.org/I118347636"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Md Zakir Hossain","raw_affiliation_strings":["Research School of Computer Science, Australian National University, Canberra, Australia"],"affiliations":[{"raw_affiliation_string":"Research School of Computer Science, Australian National University, Canberra, Australia","institution_ids":["https://openalex.org/I118347636"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5030379402","display_name":"Tom Gedeon","orcid":"https://orcid.org/0000-0001-8356-4909"},"institutions":[{"id":"https://openalex.org/I118347636","display_name":"Australian National University","ror":"https://ror.org/019wvm592","country_code":"AU","type":"education","lineage":["https://openalex.org/I118347636"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Tom Gedeon","raw_affiliation_strings":["Research School of Computer Science, Australian National University, Canberra, Australia"],"affiliations":[{"raw_affiliation_string":"Research School of Computer Science, Australian National University, Canberra, Australia","institution_ids":["https://openalex.org/I118347636"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":2.077,"has_fulltext":false,"cited_by_count":3,"citation_normalized_percentile":{"value":0.829032,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":75,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"839","last_page":"850"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10667","display_name":"Emotion Recognition and Analysis in Multimodal Data","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},"topics":[{"id":"https://openalex.org/T10667","display_name":"Emotion Recognition and Analysis in Multimodal Data","score":0.9994,"subfield":{"id":"https://openalex.org/subfields/3205","display_name":"Experimental and Cognitive Psychology"},"field":{"id":"https://openalex.org/fields/32","display_name":"Psychology"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T11707","display_name":"Eye Tracking in Human-Computer Interaction","score":0.9914,"subfield":{"id":"https://openalex.org/subfields/1709","display_name":"Human-Computer Interaction"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10429","display_name":"Brain-Computer Interfaces in Neuroscience and Medicine","score":0.9847,"subfield":{"id":"https://openalex.org/subfields/2805","display_name":"Cognitive Neuroscience"},"field":{"id":"https://openalex.org/fields/28","display_name":"Neuroscience"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/affective-computing","display_name":"Affective Computing","score":0.604848},{"id":"https://openalex.org/keywords/emotion-recognition","display_name":"Emotion Recognition","score":0.599363},{"id":"https://openalex.org/keywords/facial-expression","display_name":"Facial Expression","score":0.587407},{"id":"https://openalex.org/keywords/head-gesture-recognition","display_name":"Head Gesture Recognition","score":0.576413},{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.5492475},{"id":"https://openalex.org/keywords/feature-extraction","display_name":"Feature Extraction","score":0.542696}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.79156625},{"id":"https://openalex.org/C12267149","wikidata":"https://www.wikidata.org/wiki/Q282453","display_name":"Support vector machine","level":2,"score":0.7012639},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6639948},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.60655874},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.5492475},{"id":"https://openalex.org/C98045186","wikidata":"https://www.wikidata.org/wiki/Q205663","display_name":"Process (computing)","level":2,"score":0.4556823},{"id":"https://openalex.org/C99844830","wikidata":"https://www.wikidata.org/wiki/Q102441924","display_name":"Scaling","level":2,"score":0.4418534},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.44094715},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.41702083},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.411103},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.36299062},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.118799865},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C111919701","wikidata":"https://www.wikidata.org/wiki/Q9135","display_name":"Operating system","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-319-70093-9_89","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1596560700","https://openalex.org/W167704341","https://openalex.org/W1997662771","https://openalex.org/W2013137720","https://openalex.org/W2025113711","https://openalex.org/W2035343574","https://openalex.org/W2058658320","https://openalex.org/W2061956042","https://openalex.org/W2082020538","https://openalex.org/W2103943262","https://openalex.org/W2120945046","https://openalex.org/W2121395437","https://openalex.org/W2122098299","https://openalex.org/W2122528367","https://openalex.org/W2132326707","https://openalex.org/W2161634108","https://openalex.org/W2162366791","https://openalex.org/W2163546575","https://openalex.org/W2164368909","https://openalex.org/W2166562429","https://openalex.org/W2288357855","https://openalex.org/W2334097005","https://openalex.org/W2558680118","https://openalex.org/W2560204497","https://openalex.org/W2566902710","https://openalex.org/W2625015202","https://openalex.org/W267288741","https://openalex.org/W4255000641"],"related_works":["https://openalex.org/W4378770497","https://openalex.org/W2104657898","https://openalex.org/W2090763504","https://openalex.org/W2079781215","https://openalex.org/W2064404759","https://openalex.org/W2049584446","https://openalex.org/W1948992892","https://openalex.org/W1886884218","https://openalex.org/W148178222","https://openalex.org/W141820298"],"abstract_inverted_index":{"To":[0],"find":[1,170],"the":[2,80,112,120,123,130,135,141],"genuineness":[3],"of":[4,27,74,114,122,133,138,143,146],"a":[5,22,85,157,166,171],"human":[6,16],"behavior/emotion":[7],"is":[8,50,165,186],"an":[9],"important":[10],"research":[11],"topic":[12],"in":[13],"affective":[14],"and":[15,42,55,67,89,103,117,140,175],"centered":[17],"computing.":[18],"This":[19],"paper":[20],"uses":[21],"feature":[23,177],"level":[24,178],"fusion":[25,179],"technique":[26],"three":[28],"peripheral":[29],"physiological":[30,82],"features":[31,76],"from":[32,79,156],"observers,":[33],"namely":[34],"pupillary":[35],"response":[36,45],"(PR),":[37],"blood":[38],"volume":[39],"pulse":[40],"(BVP),":[41],"galvanic":[43],"skin":[44],"(GSR).":[46],"The":[47],"observers'":[48],"task":[49],"to":[51,169],"distinguish":[52],"between":[53],"real":[54,65],"posed":[56,70],"smiles":[57,66],"when":[58,182],"watching":[59],"twenty":[60],"smilers'":[61],"videos":[62],"(half":[63],"being":[64],"half":[68],"are":[69,77],"smiles).":[71],"A":[72],"number":[73],"temporal":[75],"extracted":[78],"recorded":[81],"signals":[83],"after":[84],"few":[86],"processing":[87],"steps":[88],"fused":[90],"before":[91],"computing":[92],"classification":[93,173],"performance":[94],"by":[95],"k-nearest":[96],"neighbor":[97],"(KNN),":[98],"support":[99],"vector":[100],"machine":[101],"(SVM),":[102],"neural":[104],"network":[105],"(NN)":[106],"classifiers.":[107,124],"Many":[108],"factors":[109,137],"can":[110,180],"affect":[111],"results":[113,155],"smile":[115],"classification,":[116],"depend":[118],"upon":[119],"architecture":[121],"In":[125],"this":[126],"study,":[127],"we":[128],"varied":[129],"K":[131],"values":[132],"KNN,":[134],"scaling":[136],"SVM,":[139],"numbers":[142],"hidden":[144],"nodes":[145],"NN":[147],"with":[148],"other":[149],"parameters":[150],"unchanged.":[151],"Our":[152],"final":[153],"experimental":[154],"robust":[158],"leave-one-everything-out":[159],"process":[160],"indicate":[161,181],"that":[162,176],"parameter":[163,184],"tuning":[164,185],"vital":[167],"factor":[168],"high":[172],"accuracy,":[174],"more":[183],"needed.":[187]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2765526501","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":1}],"updated_date":"2024-12-04T14:33:57.354044","created_date":"2017-11-10"}