{"id":"https://openalex.org/W2766301745","doi":"https://doi.org/10.1007/978-3-319-70093-9_40","title":"A Simple Convolutional Transfer Neural Networks in Vision Tasks","display_name":"A Simple Convolutional Transfer Neural Networks in Vision Tasks","publication_year":2017,"publication_date":"2017-01-01","ids":{"openalex":"https://openalex.org/W2766301745","doi":"https://doi.org/10.1007/978-3-319-70093-9_40","mag":"2766301745"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-319-70093-9_40","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5050899435","display_name":"Wenlei Wu","orcid":null},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wenlei Wu","raw_affiliation_strings":["Tencent Computer Systems Company Limited, Shenzhen, 518000, China"],"affiliations":[{"raw_affiliation_string":"Tencent Computer Systems Company Limited, Shenzhen, 518000, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5041547899","display_name":"Zhaohang Lin","orcid":null},"institutions":[{"id":"https://openalex.org/I2250653659","display_name":"Tencent (China)","ror":"https://ror.org/00hhjss72","country_code":"CN","type":"company","lineage":["https://openalex.org/I2250653659"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Zhaohang Lin","raw_affiliation_strings":["Tencent Computer Systems Company Limited, Shenzhen, 518000, China"],"affiliations":[{"raw_affiliation_string":"Tencent Computer Systems Company Limited, Shenzhen, 518000, China","institution_ids":["https://openalex.org/I2250653659"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5052820597","display_name":"Xinghao Ding","orcid":"https://orcid.org/0000-0003-2288-5287"},"institutions":[{"id":"https://openalex.org/I191208505","display_name":"Xiamen University","ror":"https://ror.org/00mcjh785","country_code":"CN","type":"education","lineage":["https://openalex.org/I191208505"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xinghao Ding","raw_affiliation_strings":["Department of Communication Engineering, Xiamen University, Xiamen, 361005, China"],"affiliations":[{"raw_affiliation_string":"Department of Communication Engineering, Xiamen University, Xiamen, 361005, China","institution_ids":["https://openalex.org/I191208505"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100772804","display_name":"Yue Huang","orcid":"https://orcid.org/0000-0002-3913-9400"},"institutions":[{"id":"https://openalex.org/I191208505","display_name":"Xiamen University","ror":"https://ror.org/00mcjh785","country_code":"CN","type":"education","lineage":["https://openalex.org/I191208505"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yue Huang","raw_affiliation_strings":["Department of Communication Engineering, Xiamen University, Xiamen, 361005, China"],"affiliations":[{"raw_affiliation_string":"Department of Communication Engineering, Xiamen University, Xiamen, 361005, China","institution_ids":["https://openalex.org/I191208505"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.0,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":64},"biblio":{"volume":null,"issue":null,"first_page":"385","last_page":"392"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11438","display_name":"Detection and Management of Retinal Diseases","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},"topics":[{"id":"https://openalex.org/T11438","display_name":"Detection and Management of Retinal Diseases","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10036","display_name":"Deep Learning in Computer Vision and Image Recognition","score":0.9993,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/mnist-database","display_name":"MNIST database","score":0.7892226},{"id":"https://openalex.org/keywords/transfer-of-learning","display_name":"Transfer of learning","score":0.65832335},{"id":"https://openalex.org/keywords/labeled-data","display_name":"Labeled data","score":0.65049803},{"id":"https://openalex.org/keywords/transfer-learning","display_name":"Transfer Learning","score":0.640549},{"id":"https://openalex.org/keywords/unsupervised-learning","display_name":"Unsupervised Learning","score":0.589597},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.555456},{"id":"https://openalex.org/keywords/few-shot-learning","display_name":"Few-Shot Learning","score":0.546224},{"id":"https://openalex.org/keywords/meta-learning","display_name":"Meta-Learning","score":0.542569},{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.4749601},{"id":"https://openalex.org/keywords/deep-neural-networks","display_name":"Deep neural networks","score":0.45825377},{"id":"https://openalex.org/keywords/training-set","display_name":"Training set","score":0.44290757}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8783922},{"id":"https://openalex.org/C190502265","wikidata":"https://www.wikidata.org/wiki/Q17069496","display_name":"MNIST database","level":3,"score":0.7892226},{"id":"https://openalex.org/C81363708","wikidata":"https://www.wikidata.org/wiki/Q17084460","display_name":"Convolutional neural network","level":2,"score":0.72630733},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.7110882},{"id":"https://openalex.org/C150899416","wikidata":"https://www.wikidata.org/wiki/Q1820378","display_name":"Transfer of learning","level":2,"score":0.65832335},{"id":"https://openalex.org/C2776145971","wikidata":"https://www.wikidata.org/wiki/Q30673951","display_name":"Labeled data","level":2,"score":0.65049803},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.5639137},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.4749601},{"id":"https://openalex.org/C2984842247","wikidata":"https://www.wikidata.org/wiki/Q197536","display_name":"Deep neural networks","level":3,"score":0.45825377},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.45340082},{"id":"https://openalex.org/C51632099","wikidata":"https://www.wikidata.org/wiki/Q3985153","display_name":"Training set","level":2,"score":0.44290757},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.44251558},{"id":"https://openalex.org/C190470478","wikidata":"https://www.wikidata.org/wiki/Q2370229","display_name":"Invariant (physics)","level":2,"score":0.4409782},{"id":"https://openalex.org/C2780586882","wikidata":"https://www.wikidata.org/wiki/Q7520643","display_name":"Simple (philosophy)","level":2,"score":0.41853815},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.4170009},{"id":"https://openalex.org/C121332964","wikidata":"https://www.wikidata.org/wiki/Q413","display_name":"Physics","level":0,"score":0.0},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C37914503","wikidata":"https://www.wikidata.org/wiki/Q156495","display_name":"Mathematical physics","level":1,"score":0.0},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C111472728","wikidata":"https://www.wikidata.org/wiki/Q9471","display_name":"Epistemology","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-319-70093-9_40","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"score":0.47,"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":16,"referenced_works":["https://openalex.org/W1983364832","https://openalex.org/W2015861736","https://openalex.org/W2022508996","https://openalex.org/W2028706510","https://openalex.org/W2103212315","https://openalex.org/W2112739286","https://openalex.org/W2112796928","https://openalex.org/W2122644916","https://openalex.org/W2125085157","https://openalex.org/W2128354257","https://openalex.org/W2144354855","https://openalex.org/W2145305441","https://openalex.org/W2150769593","https://openalex.org/W2154579312","https://openalex.org/W2165698076","https://openalex.org/W2546302380"],"related_works":["https://openalex.org/W4385524141","https://openalex.org/W4297776111","https://openalex.org/W4288018014","https://openalex.org/W3194633786","https://openalex.org/W3026616975","https://openalex.org/W3018979822","https://openalex.org/W2996058201","https://openalex.org/W2989784533","https://openalex.org/W2618574054","https://openalex.org/W2578444090"],"abstract_inverted_index":{"Convolutional":[0],"neural":[1,76],"networks":[2,77],"(ConvNets)":[3],"is":[4,47,52,142,167,200],"multi-stages":[5],"trainable":[6],"architecture":[7],"that":[8,44,143,196],"can":[9,40,145,159],"learn":[10],"invariant":[11],"features":[12],"in":[13,33,63,107,211],"many":[14],"vision":[15],"tasks.":[16],"Real-world":[17],"applications":[18],"of":[19,27,90,103,138,206],"ConvNets":[20,56],"are":[21,183],"always":[22],"limited":[23],"by":[24,86],"strong":[25],"requirements":[26],"expensive":[28],"and":[29,126,133,153,181],"time-consuming":[30],"labels":[31],"generating":[32],"each":[34],"specified":[35],"task,":[36],"so":[37],"the":[38,64,84,88,104,139,149,157,163,187,197,204],"challenges":[39,85],"be":[41,160],"summarized":[42],"as":[43],"labeled":[45,125,164,208],"data":[46,51,166],"scarce":[48],"while":[49],"unlabeled":[50,66,127],"abundant.":[53],"The":[54,136,190],"traditional":[55],"does":[57],"not":[58],"consider":[59],"any":[60],"information":[61],"hidden":[62],"large-scale":[65],"data.":[67,135],"In":[68],"this":[69],"work,":[70],"a":[71],"very":[72],"simple":[73],"convolutional":[74],"transfer":[75,92],"(CTNN)":[78],"has":[79,117],"been":[80,118],"proposed":[81,140,188,198],"to":[82,94,120,185,202],"address":[83],"introducing":[87],"idea":[89],"unsupervised":[91,112],"learning":[93],"ConvNets.":[95],"We":[96],"propose":[97],"our":[98],"model":[99,106,141],"with":[100,175],"LeNet5,":[101],"one":[102],"simplest":[105],"ConvNets,":[108],"where":[109],"an":[110],"efficient":[111],"reconstruction":[113],"based":[114],"pre-training":[115],"strategy":[116],"introduced":[119],"kernel":[121],"training":[122,132,152,165,209],"from":[123,130],"both":[124,131],"data,":[128,150],"or":[129],"testing":[134,154],"contribution":[137],"it":[144],"fully":[146],"use":[147],"all":[148],"including":[151],"simultaneously,":[155],"thus":[156],"performances":[158],"improved":[161],"when":[162],"insufficient.":[168],"Widely":[169],"used":[170],"hand-written":[171],"dataset":[172],"MNIST,":[173],"together":[174],"two":[176],"retinal":[177],"vessel":[178],"datasets,":[179],"DRIVE":[180],"STARE,":[182],"employed":[184],"validate":[186],"work.":[189],"classification":[191],"experiments":[192],"results":[193],"have":[194],"demonstrated":[195],"CTNN":[199],"able":[201],"reduce":[203],"requirement":[205],"sufficient":[207],"samples":[210],"real-world":[212],"applications.":[213]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2766301745","counts_by_year":[],"updated_date":"2024-09-19T05:58:41.272995","created_date":"2017-11-10"}