{"id":"https://openalex.org/W117433297","doi":"https://doi.org/10.1007/978-3-319-08245-5_8","title":"Finding Implicit Features in Consumer Reviews for Sentiment Analysis","display_name":"Finding Implicit Features in Consumer Reviews for Sentiment Analysis","publication_year":2014,"publication_date":"2014-01-01","ids":{"openalex":"https://openalex.org/W117433297","doi":"https://doi.org/10.1007/978-3-319-08245-5_8","mag":"117433297"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-319-08245-5_8","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5070604721","display_name":"Kim Schouten","orcid":"https://orcid.org/0000-0003-1604-0333"},"institutions":[{"id":"https://openalex.org/I913958620","display_name":"Erasmus University Rotterdam","ror":"https://ror.org/057w15z03","country_code":"NL","type":"education","lineage":["https://openalex.org/I913958620"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Kim Schouten","raw_affiliation_strings":["Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR, Rotterdam, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR, Rotterdam, The Netherlands","institution_ids":["https://openalex.org/I913958620"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5044867921","display_name":"Flavius Fr\u0103sincar","orcid":"https://orcid.org/0000-0002-8031-758X"},"institutions":[{"id":"https://openalex.org/I913958620","display_name":"Erasmus University Rotterdam","ror":"https://ror.org/057w15z03","country_code":"NL","type":"education","lineage":["https://openalex.org/I913958620"]}],"countries":["NL"],"is_corresponding":false,"raw_author_name":"Flavius Frasincar","raw_affiliation_strings":["Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR, Rotterdam, The Netherlands"],"affiliations":[{"raw_affiliation_string":"Erasmus University Rotterdam, P.O. Box 1738, NL-3000 DR, Rotterdam, The Netherlands","institution_ids":["https://openalex.org/I913958620"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":5.039,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":42,"citation_normalized_percentile":{"value":0.97289,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":95,"max":96},"biblio":{"volume":null,"issue":null,"first_page":"130","last_page":"144"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10664","display_name":"Sentiment Analysis and Opinion Mining","score":0.9999,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T13083","display_name":"Automatic Keyword Extraction from Textual Data","score":0.9954,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10609","display_name":"Impact of Social Media on Consumer Behavior","score":0.9751,"subfield":{"id":"https://openalex.org/subfields/3312","display_name":"Sociology and Political Science"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/feature","display_name":"Feature (linguistics)","score":0.6356479},{"id":"https://openalex.org/keywords/aspect-based-sentiment-analysis","display_name":"Aspect-based Sentiment Analysis","score":0.5773},{"id":"https://openalex.org/keywords/sentiment-analysis","display_name":"Sentiment Analysis","score":0.547487},{"id":"https://openalex.org/keywords/emotion-recognition","display_name":"Emotion Recognition","score":0.537978},{"id":"https://openalex.org/keywords/text-mining","display_name":"Text Mining","score":0.520581},{"id":"https://openalex.org/keywords/online-branding","display_name":"Online Branding","score":0.512164}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8061861},{"id":"https://openalex.org/C2777530160","wikidata":"https://www.wikidata.org/wiki/Q41796","display_name":"Sentence","level":2,"score":0.7527167},{"id":"https://openalex.org/C2776401178","wikidata":"https://www.wikidata.org/wiki/Q12050496","display_name":"Feature (linguistics)","level":2,"score":0.6356479},{"id":"https://openalex.org/C66402592","wikidata":"https://www.wikidata.org/wiki/Q2271421","display_name":"Sentiment analysis","level":2,"score":0.5823484},{"id":"https://openalex.org/C9652623","wikidata":"https://www.wikidata.org/wiki/Q190109","display_name":"Field (mathematics)","level":2,"score":0.5624537},{"id":"https://openalex.org/C90673727","wikidata":"https://www.wikidata.org/wiki/Q901718","display_name":"Product (mathematics)","level":2,"score":0.4799526},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.46466434},{"id":"https://openalex.org/C52622490","wikidata":"https://www.wikidata.org/wiki/Q1026626","display_name":"Feature extraction","level":2,"score":0.44622698},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4415733},{"id":"https://openalex.org/C2780009758","wikidata":"https://www.wikidata.org/wiki/Q6804172","display_name":"Measure (data warehouse)","level":2,"score":0.43949926},{"id":"https://openalex.org/C23123220","wikidata":"https://www.wikidata.org/wiki/Q816826","display_name":"Information retrieval","level":1,"score":0.3613782},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.337386},{"id":"https://openalex.org/C41895202","wikidata":"https://www.wikidata.org/wiki/Q8162","display_name":"Linguistics","level":1,"score":0.11958715},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.11692542},{"id":"https://openalex.org/C138885662","wikidata":"https://www.wikidata.org/wiki/Q5891","display_name":"Philosophy","level":0,"score":0.0},{"id":"https://openalex.org/C2524010","wikidata":"https://www.wikidata.org/wiki/Q8087","display_name":"Geometry","level":1,"score":0.0},{"id":"https://openalex.org/C202444582","wikidata":"https://www.wikidata.org/wiki/Q837863","display_name":"Pure mathematics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-319-08245-5_8","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Peace, justice, and strong institutions","score":0.82,"id":"https://metadata.un.org/sdg/16"}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":11,"referenced_works":["https://openalex.org/W1544805753","https://openalex.org/W1651266083","https://openalex.org/W1880262756","https://openalex.org/W1980085292","https://openalex.org/W2070694721","https://openalex.org/W2106477703","https://openalex.org/W2114581066","https://openalex.org/W2149167588","https://openalex.org/W2159457224","https://openalex.org/W2160660844","https://openalex.org/W82110502"],"related_works":["https://openalex.org/W4200472398","https://openalex.org/W3209984204","https://openalex.org/W2923978210","https://openalex.org/W2391472853","https://openalex.org/W2154712841","https://openalex.org/W2098697817","https://openalex.org/W2075597471","https://openalex.org/W2002261357","https://openalex.org/W1835566166","https://openalex.org/W159132833"],"abstract_inverted_index":{"With":[0],"the":[1,9,15,23,52,60,74,94,100,118,143,147],"explosion":[2],"of":[3,22,96],"e-commerce":[4],"shopping,":[5],"customer":[6],"reviews":[7,139],"on":[8,29,50,89],"Web":[10],"have":[11,113],"become":[12],"essential":[13],"in":[14,25,56],"decision":[16],"making":[17],"process":[18],"for":[19],"consumers.":[20],"Much":[21],"research":[24,44,70],"this":[26,69,79],"field":[27],"focuses":[28],"explicit":[30],"feature":[31,38,55,77,116],"extraction":[32,39],"and":[33,117,140,151],"sentiment":[34],"extraction.":[35],"However,":[36],"implicit":[37,54,76,82,115],"is":[40,64,126,134],"a":[41,57,86,97,123],"relatively":[42],"new":[43],"field.":[45],"Whereas":[46],"previous":[47],"works":[48],"focused":[49],"finding":[51,73],"correct":[53],"sentence,":[58,98],"given":[59],"fact":[61],"that":[62,106,112,120],"one":[63,102],"known":[65],"to":[66,105],"be":[67],"present,":[68],"aims":[71],"at":[72],"right":[75],"without":[78],"pre-knowledge.":[80],"Potential":[81],"features":[83,131],"are":[84],"assigned":[85,104],"score":[87,133],"based":[88],"their":[90],"co-occurrence":[91],"frequencies":[92],"with":[93,99],"words":[95],"highest-scoring":[101],"being":[103],"sentence.":[107],"To":[108],"distinguish":[109],"between":[110],"sentences":[111],"an":[114],"ones":[119],"do":[121],"not,":[122],"threshold":[124],"parameter":[125],"introduced,":[127],"filtering":[128],"out":[129],"potential":[130],"whose":[132],"too":[135],"low.":[136],"Using":[137],"restaurant":[138],"product":[141],"reviews,":[142],"threshold-based":[144],"approach":[145],"improves":[146],"F1-measure":[148],"by":[149],"3.6":[150],"8.7":[152],"percentage":[153],"points,":[154],"respectively.":[155]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W117433297","counts_by_year":[{"year":2023,"cited_by_count":3},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":2},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":6},{"year":2018,"cited_by_count":6},{"year":2017,"cited_by_count":3},{"year":2016,"cited_by_count":8},{"year":2015,"cited_by_count":2},{"year":2014,"cited_by_count":2}],"updated_date":"2024-11-30T17:52:07.802505","created_date":"2016-06-24"}