{"id":"https://openalex.org/W4391407772","doi":"https://doi.org/10.1007/978-3-031-51572-9_5","title":"Machine Learning for Insurance Fraud Detection","display_name":"Machine Learning for Insurance Fraud Detection","publication_year":2024,"publication_date":"2024-01-01","ids":{"openalex":"https://openalex.org/W4391407772","doi":"https://doi.org/10.1007/978-3-031-51572-9_5"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-031-51572-9_5","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5104237289","display_name":"Maria Chousa Santos","orcid":null},"institutions":[{"id":"https://openalex.org/I99682543","display_name":"University of Minho","ror":"https://ror.org/037wpkx04","country_code":"PT","type":"funder","lineage":["https://openalex.org/I99682543"]}],"countries":["PT"],"is_corresponding":true,"raw_author_name":"Maria Chousa Santos","raw_affiliation_strings":["University of Minho, Braga, Portugal"],"affiliations":[{"raw_affiliation_string":"University of Minho, Braga, Portugal","institution_ids":["https://openalex.org/I99682543"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5047438044","display_name":"Teresa Pereira","orcid":"https://orcid.org/0000-0002-5845-4086"},"institutions":[{"id":"https://openalex.org/I99682543","display_name":"University of Minho","ror":"https://ror.org/037wpkx04","country_code":"PT","type":"funder","lineage":["https://openalex.org/I99682543"]}],"countries":["PT"],"is_corresponding":false,"raw_author_name":"Teresa Pereira","raw_affiliation_strings":["School of Engineering (DIS), University of Minho, Guimar\u00e3es, Portugal"],"affiliations":[{"raw_affiliation_string":"School of Engineering (DIS), University of Minho, Guimar\u00e3es, Portugal","institution_ids":["https://openalex.org/I99682543"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5089469022","display_name":"Isabel Am\u00e9lia Costa Mendes","orcid":"https://orcid.org/0000-0002-0704-4319"},"institutions":[{"id":"https://openalex.org/I60858718","display_name":"University of Aveiro","ror":"https://ror.org/00nt41z93","country_code":"PT","type":"funder","lineage":["https://openalex.org/I60858718"]}],"countries":["PT"],"is_corresponding":false,"raw_author_name":"Isabel Mendes","raw_affiliation_strings":["School of Technology and Management (ESTGA), University of Aveiro, \u00c1gueda, Portugal"],"affiliations":[{"raw_affiliation_string":"School of Technology and Management (ESTGA), University of Aveiro, \u00c1gueda, Portugal","institution_ids":["https://openalex.org/I60858718"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5076135819","display_name":"Ant\u00f3nio Amaral","orcid":"https://orcid.org/0000-0002-7910-2418"},"institutions":[{"id":"https://openalex.org/I83863532","display_name":"Polytechnic Institute of Porto","ror":"https://ror.org/04988re48","country_code":"PT","type":"funder","lineage":["https://openalex.org/I83863532"]}],"countries":["PT"],"is_corresponding":false,"raw_author_name":"Ant\u00f3nio Amaral","raw_affiliation_strings":["Polytechnic of Porto - School of Engineering (ISEP), Porto, Portugal"],"affiliations":[{"raw_affiliation_string":"Polytechnic of Porto - School of Engineering (ISEP), Porto, Portugal","institution_ids":["https://openalex.org/I83863532"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":["https://openalex.org/A5104237289"],"corresponding_institution_ids":["https://openalex.org/I99682543"],"apc_list":null,"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":77},"biblio":{"volume":null,"issue":null,"first_page":"56","last_page":"65"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11652","display_name":"Imbalanced Data Classification Techniques","score":0.9931,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11891","display_name":"Big Data and Business Intelligence","score":0.9711,"subfield":{"id":"https://openalex.org/subfields/1404","display_name":"Management Information Systems"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12384","display_name":"Customer churn and segmentation","score":0.9507,"subfield":{"id":"https://openalex.org/subfields/1406","display_name":"Marketing"},"field":{"id":"https://openalex.org/fields/14","display_name":"Business, Management and Accounting"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/insurance-fraud","display_name":"Insurance fraud","score":0.7338952}],"concepts":[{"id":"https://openalex.org/C2778976927","wikidata":"https://www.wikidata.org/wiki/Q838081","display_name":"Insurance fraud","level":2,"score":0.7338952},{"id":"https://openalex.org/C144133560","wikidata":"https://www.wikidata.org/wiki/Q4830453","display_name":"Business","level":0,"score":0.48686424},{"id":"https://openalex.org/C162118730","wikidata":"https://www.wikidata.org/wiki/Q1128453","display_name":"Actuarial science","level":1,"score":0.3418861},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.33042037}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-031-51572-9_5","pdf_url":null,"source":null,"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.55}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":10,"referenced_works":["https://openalex.org/W1514721394","https://openalex.org/W2115329873","https://openalex.org/W2403749440","https://openalex.org/W2972967211","https://openalex.org/W2999237991","https://openalex.org/W2999550113","https://openalex.org/W3103243862","https://openalex.org/W4210689198","https://openalex.org/W4224303312","https://openalex.org/W4400134761"],"related_works":["https://openalex.org/W2791196070","https://openalex.org/W2748952813","https://openalex.org/W2564225104","https://openalex.org/W2390279801","https://openalex.org/W2361887085","https://openalex.org/W2358668433","https://openalex.org/W2271511975","https://openalex.org/W2271091707","https://openalex.org/W2261947819","https://openalex.org/W2120562197"],"abstract_inverted_index":{"Fraudulent":[0],"activities":[1,18,176],"are":[2,19,40,149],"a":[3,10,35,74,146,152,191],"complex":[4],"problem,":[5],"and":[6,48,68,99,106,177,186,194],"still":[7],"evolve":[8],"in":[9,13,119,145,184],"continual":[11],"basis":[12],"all":[14],"company":[15],"sectors.":[16],"These":[17],"considered":[20],"as":[21],"one":[22],"of":[23,65,81,93,111,133,139,155,164,182],"the":[24,27,59,69,91,109,131,137,162,170,180],"major":[25],"difficulties":[26],"insurance":[28],"companies":[29,124,172],"have":[30],"to":[31,44,76,85,102,129,142,160,168,173,189],"deal":[32],"with":[33],"on":[34],"daily":[36],"basis.":[37],"Thus,":[38],"insurers":[39,123,171],"looking":[41],"for":[42],"ways":[43],"effectively":[45],"manage,":[46],"control,":[47],"mitigate":[49],"fraud.":[50],"In":[51,108],"addition,":[52],"improving":[53],"profits":[54],"by":[55],"minimizing":[56],"fraud":[57],"is":[58],"main":[60],"goal.":[61],"The":[62,79,122],"exponential":[63],"amount":[64,154],"information":[66],"collected,":[67],"technology":[70,167,183],"evolvement":[71],"has":[72,115],"been":[73,116],"strategy":[75],"address":[77],"frauds.":[78],"Internet":[80],"Everything":[82],"enables":[83],"organizations":[84],"access":[86],"diverse":[87],"information's":[88],"resources":[89],"through":[90,136,151],"interconnection":[92],"people-to-machines,":[94],"which":[95,148],"involves":[96],"machines,":[97],"data":[98],"people,":[100],"contributing":[101],"increase":[103],"their":[104],"knowledge":[105],"intelligence.":[107],"world":[110],"technology,":[112],"Machine":[113,127,165],"Learning":[114,128,166],"widely":[117],"implemented":[118],"multiple":[120],"contexts.":[121],"start":[125],"using":[126],"support":[130,169],"detection":[132],"fraudulent":[134,175],"complaints":[135],"application":[138],"algorithms":[140],"aimed":[141],"find":[143],"patterns":[144],"database,":[147],"hidden":[150],"large":[153],"data.":[156],"This":[157],"paper":[158],"intends":[159],"present":[161],"use":[163],"detect":[174],"further":[178],"analyze":[179],"impacts":[181],"people":[185],"thus":[187],"enable":[188],"achieve":[190],"more":[192],"rapid":[193],"accurate":[195],"information.":[196]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4391407772","counts_by_year":[],"updated_date":"2025-04-18T15:47:10.945249","created_date":"2024-02-01"}