{"id":"https://openalex.org/W4388349017","doi":"https://doi.org/10.1007/978-3-031-46661-8_48","title":"When Alignment Makes a Difference: A Content-Based Variational Model for Cold-Start CTR Prediction","display_name":"When Alignment Makes a Difference: A Content-Based Variational Model for Cold-Start CTR Prediction","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4388349017","doi":"https://doi.org/10.1007/978-3-031-46661-8_48"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-031-46661-8_48","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5108982309","display_name":"Jianyu Ren","orcid":null},"institutions":[{"id":"https://openalex.org/I3923682","display_name":"Soochow University","ror":"https://ror.org/05t8y2r12","country_code":"CN","type":"education","lineage":["https://openalex.org/I3923682"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jianyu Ren","raw_affiliation_strings":["School of Computer Science and Technology, Soochow University, Suzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Soochow University, Suzhou, China","institution_ids":["https://openalex.org/I3923682"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5073200713","display_name":"Ruoqian Zhang","orcid":null},"institutions":[{"id":"https://openalex.org/I3923682","display_name":"Soochow University","ror":"https://ror.org/05t8y2r12","country_code":"CN","type":"education","lineage":["https://openalex.org/I3923682"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Ruoqian Zhang","raw_affiliation_strings":["School of Computer Science and Technology, Soochow University, Suzhou, China"],"affiliations":[{"raw_affiliation_string":"School of Computer Science and Technology, Soochow University, Suzhou, China","institution_ids":["https://openalex.org/I3923682"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":69},"biblio":{"volume":null,"issue":null,"first_page":"724","last_page":"739"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10203","display_name":"Recommender System Technologies","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10203","display_name":"Recommender System Technologies","score":1.0,"subfield":{"id":"https://openalex.org/subfields/1710","display_name":"Information Systems"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10824","display_name":"Shape Matching and Object Recognition","score":0.9857,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12101","display_name":"Optimization of Multi-Armed Bandit Problems","score":0.9806,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/cold-start","display_name":"Cold start (automotive)","score":0.6898027},{"id":"https://openalex.org/keywords/click-through-rate-prediction","display_name":"Click-Through Rate Prediction","score":0.652076},{"id":"https://openalex.org/keywords/content-based-recommendation","display_name":"Content-Based Recommendation","score":0.610422},{"id":"https://openalex.org/keywords/context-aware-recommender-systems","display_name":"Context-Aware Recommender Systems","score":0.591925},{"id":"https://openalex.org/keywords/trust-aware-recommender-systems","display_name":"Trust-Aware Recommender Systems","score":0.564439},{"id":"https://openalex.org/keywords/user-modeling","display_name":"User Modeling","score":0.532989},{"id":"https://openalex.org/keywords/similarity","display_name":"Similarity (geometry)","score":0.5316993},{"id":"https://openalex.org/keywords/content","display_name":"Content (measure theory)","score":0.45402533}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8149725},{"id":"https://openalex.org/C2778956030","wikidata":"https://www.wikidata.org/wiki/Q5142477","display_name":"Cold start (automotive)","level":2,"score":0.6898027},{"id":"https://openalex.org/C41608201","wikidata":"https://www.wikidata.org/wiki/Q980509","display_name":"Embedding","level":2,"score":0.6317798},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6129004},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.6035761},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.53415525},{"id":"https://openalex.org/C103278499","wikidata":"https://www.wikidata.org/wiki/Q254465","display_name":"Similarity (geometry)","level":3,"score":0.5316993},{"id":"https://openalex.org/C2781249084","wikidata":"https://www.wikidata.org/wiki/Q908656","display_name":"Preference","level":2,"score":0.49918818},{"id":"https://openalex.org/C2778152352","wikidata":"https://www.wikidata.org/wiki/Q5165061","display_name":"Content (measure theory)","level":2,"score":0.45402533},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.3977079},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.3946153},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.37425345},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.35361543},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.117120326},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.08904466},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.0},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C127413603","wikidata":"https://www.wikidata.org/wiki/Q11023","display_name":"Engineering","level":0,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C115961682","wikidata":"https://www.wikidata.org/wiki/Q860623","display_name":"Image (mathematics)","level":2,"score":0.0},{"id":"https://openalex.org/C146978453","wikidata":"https://www.wikidata.org/wiki/Q3798668","display_name":"Aerospace engineering","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-031-46661-8_48","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":25,"referenced_works":["https://openalex.org/W2295739661","https://openalex.org/W2475334473","https://openalex.org/W2604662567","https://openalex.org/W2798454267","https://openalex.org/W2883308936","https://openalex.org/W2955380732","https://openalex.org/W2955624969","https://openalex.org/W2963085847","https://openalex.org/W2963924287","https://openalex.org/W2964182926","https://openalex.org/W2964983698","https://openalex.org/W2981505961","https://openalex.org/W2982215239","https://openalex.org/W3035100081","https://openalex.org/W3045509867","https://openalex.org/W3045585636","https://openalex.org/W3081320135","https://openalex.org/W3117286046","https://openalex.org/W3152321673","https://openalex.org/W3153108722","https://openalex.org/W3177031501","https://openalex.org/W3187169135","https://openalex.org/W3187955851","https://openalex.org/W3208349097","https://openalex.org/W4224310918"],"related_works":["https://openalex.org/W4385238808","https://openalex.org/W4313327643","https://openalex.org/W3207757380","https://openalex.org/W3180903918","https://openalex.org/W2964047085","https://openalex.org/W2555127516","https://openalex.org/W2529147798","https://openalex.org/W2528269032","https://openalex.org/W2081900870","https://openalex.org/W1979350723"],"abstract_inverted_index":{"Click-Through":[0],"Rate":[1],"(CTR)":[2],"prediction":[3,27],"is":[4,64,129],"a":[5,39,53,61,98,125,161],"core":[6],"task":[7],"in":[8,23,52],"recommendation":[9],"systems.":[10],"Despite":[11],"VAE-based":[12],"models":[13,46],"have":[14],"shown":[15],"promising":[16],"accuracy":[17],"performance,":[18],"they":[19],"are":[20],"still":[21],"weak":[22],"supporting":[24],"cold-start":[25,79,122],"CTR":[26,42,173],"due":[28],"to":[29,66,86,116,131,164],"limited":[30],"personal":[31,91],"interactions.":[32],"To":[33],"this":[34,36],"end,":[35],"paper":[37],"proposes":[38],"content-based":[40],"variational":[41,58,113,126,136],"model,":[43],"which":[44],"jointly":[45],"content":[47,69,110,144],"information":[48,70,111,145],"and":[49,143],"interactions":[50,92,141],"behaviors":[51,142],"shared":[54],"probability":[55],"space":[56],"via":[57],"inference.":[59],"Specifically,":[60],"three-step":[62],"scheme":[63],"designed":[65],"fully":[67],"utilize":[68],"for":[71,102,172],"the":[72,104,118,133,149,152,167,182,185],"improved":[73],"ability":[74],"of":[75,97,121,151,169,184],"preference":[76,137],"modeling":[77],"toward":[78],"users.":[80,123],"First,":[81],"our":[82],"method":[83],"adopts":[84],"VAE":[85],"model":[87,117],"user":[88,154],"preferences":[89,120],"from":[90,140],"by":[93],"probabilistic":[94,114],"distributions,":[95],"instead":[96],"fixed":[99],"embedding":[100],"vector":[101],"representing":[103],"user\u2019s":[105],"interest.":[106],"Then,":[107],"we":[108,159],"transform":[109],"into":[112],"distribution":[115],"implicit":[119],"Finally,":[124],"alignment":[127],"strategy":[128],"applied":[130],"maximize":[132],"similarity":[134],"between":[135],"distributions":[138],"obtained":[139],"respectively,":[146],"so":[147],"that":[148],"interest":[150],"cold":[153],"can":[155],"be":[156],"recovered.":[157],"Besides,":[158],"adopt":[160],"self-attention":[162],"mechanism":[163],"reasonably":[165],"balance":[166],"importance":[168],"latent":[170],"features":[171],"prediction.":[174],"Experiments":[175],"on":[176],"two":[177],"public":[178],"real":[179],"datasets":[180],"show":[181],"effectiveness":[183],"proposed":[186],"approach.":[187]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388349017","counts_by_year":[],"updated_date":"2024-11-15T17:47:02.571164","created_date":"2023-11-05"}