{"id":"https://openalex.org/W4388348965","doi":"https://doi.org/10.1007/978-3-031-46661-8_44","title":"Graph Convolution Recurrent Denoising Diffusion Model for Multivariate Probabilistic Temporal Forecasting","display_name":"Graph Convolution Recurrent Denoising Diffusion Model for Multivariate Probabilistic Temporal Forecasting","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4388348965","doi":"https://doi.org/10.1007/978-3-031-46661-8_44"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-031-46661-8_44","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5114859145","display_name":"Ruikun Li","orcid":"https://orcid.org/0009-0004-8654-8487"},"institutions":[{"id":"https://openalex.org/I129604602","display_name":"University of Sydney","ror":"https://ror.org/0384j8v12","country_code":"AU","type":"education","lineage":["https://openalex.org/I129604602"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Ruikun Li","raw_affiliation_strings":["The University of Sydney, Camperdown, NSW, 2006, Australia"],"affiliations":[{"raw_affiliation_string":"The University of Sydney, Camperdown, NSW, 2006, Australia","institution_ids":["https://openalex.org/I129604602"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101698570","display_name":"Xuliang Li","orcid":"https://orcid.org/0009-0006-7069-0117"},"institutions":[{"id":"https://openalex.org/I129604602","display_name":"University of Sydney","ror":"https://ror.org/0384j8v12","country_code":"AU","type":"education","lineage":["https://openalex.org/I129604602"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Xuliang Li","raw_affiliation_strings":["The University of Sydney, Camperdown, NSW, 2006, Australia"],"affiliations":[{"raw_affiliation_string":"The University of Sydney, Camperdown, NSW, 2006, Australia","institution_ids":["https://openalex.org/I129604602"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5074979054","display_name":"Shiying Gao","orcid":null},"institutions":[{"id":"https://openalex.org/I129604602","display_name":"University of Sydney","ror":"https://ror.org/0384j8v12","country_code":"AU","type":"education","lineage":["https://openalex.org/I129604602"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Shiying Gao","raw_affiliation_strings":["The University of Sydney, Camperdown, NSW, 2006, Australia"],"affiliations":[{"raw_affiliation_string":"The University of Sydney, Camperdown, NSW, 2006, Australia","institution_ids":["https://openalex.org/I129604602"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5000645042","display_name":"S. T. Boris Choy","orcid":"https://orcid.org/0000-0002-6861-6974"},"institutions":[{"id":"https://openalex.org/I129604602","display_name":"University of Sydney","ror":"https://ror.org/0384j8v12","country_code":"AU","type":"education","lineage":["https://openalex.org/I129604602"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"S. T. Boris Choy","raw_affiliation_strings":["The University of Sydney, Camperdown, NSW, 2006, Australia"],"affiliations":[{"raw_affiliation_string":"The University of Sydney, Camperdown, NSW, 2006, Australia","institution_ids":["https://openalex.org/I129604602"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5015817857","display_name":"Junbin Gao","orcid":"https://orcid.org/0000-0001-9803-0256"},"institutions":[{"id":"https://openalex.org/I129604602","display_name":"University of Sydney","ror":"https://ror.org/0384j8v12","country_code":"AU","type":"education","lineage":["https://openalex.org/I129604602"]}],"countries":["AU"],"is_corresponding":false,"raw_author_name":"Junbin Gao","raw_affiliation_strings":["The University of Sydney, Camperdown, NSW, 2006, Australia"],"affiliations":[{"raw_affiliation_string":"The University of Sydney, Camperdown, NSW, 2006, Australia","institution_ids":["https://openalex.org/I129604602"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":5.111,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.999606,"is_in_top_1_percent":true,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":80,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"661","last_page":"676"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11344","display_name":"Traffic Flow Prediction and Forecasting","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11344","display_name":"Traffic Flow Prediction and Forecasting","score":0.9997,"subfield":{"id":"https://openalex.org/subfields/2215","display_name":"Building and Construction"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11980","display_name":"Understanding Human Mobility Patterns","score":0.9814,"subfield":{"id":"https://openalex.org/subfields/3313","display_name":"Transportation"},"field":{"id":"https://openalex.org/fields/33","display_name":"Social Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T12205","display_name":"Clustering of Time Series Data and Algorithms","score":0.9707,"subfield":{"id":"https://openalex.org/subfields/1711","display_name":"Signal Processing"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/probabilistic-forecasting","display_name":"Probabilistic Forecasting","score":0.550724},{"id":"https://openalex.org/keywords/spatio-temporal-data","display_name":"Spatio-Temporal Data","score":0.53598},{"id":"https://openalex.org/keywords/short-term-forecasting","display_name":"Short-Term Forecasting","score":0.529876},{"id":"https://openalex.org/keywords/dynamic-time-warping","display_name":"Dynamic Time Warping","score":0.527455},{"id":"https://openalex.org/keywords/dimensionality-reduction","display_name":"Dimensionality Reduction","score":0.5057},{"id":"https://openalex.org/keywords/graphical-model","display_name":"Graphical model","score":0.4842374},{"id":"https://openalex.org/keywords/convolution","display_name":"Convolution (computer science)","score":0.4586106}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.72920144},{"id":"https://openalex.org/C49937458","wikidata":"https://www.wikidata.org/wiki/Q2599292","display_name":"Probabilistic logic","level":2,"score":0.68744415},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.6653069},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.52960694},{"id":"https://openalex.org/C155846161","wikidata":"https://www.wikidata.org/wiki/Q1143367","display_name":"Graphical model","level":2,"score":0.4842374},{"id":"https://openalex.org/C151406439","wikidata":"https://www.wikidata.org/wiki/Q186588","display_name":"Time series","level":2,"score":0.47206834},{"id":"https://openalex.org/C45347329","wikidata":"https://www.wikidata.org/wiki/Q5166604","display_name":"Convolution (computer science)","level":3,"score":0.4586106},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4315917},{"id":"https://openalex.org/C114289077","wikidata":"https://www.wikidata.org/wiki/Q3284399","display_name":"Statistical model","level":2,"score":0.43159145},{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.38058135},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.27998862},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.19071972},{"id":"https://openalex.org/C50644808","wikidata":"https://www.wikidata.org/wiki/Q192776","display_name":"Artificial neural network","level":2,"score":0.07042435}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-031-46661-8_44","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/13","display_name":"Climate action","score":0.79}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":15,"referenced_works":["https://openalex.org/W2101491865","https://openalex.org/W2268207689","https://openalex.org/W2565330852","https://openalex.org/W2604847698","https://openalex.org/W2879259322","https://openalex.org/W2890096158","https://openalex.org/W2901504064","https://openalex.org/W2907492528","https://openalex.org/W2965341826","https://openalex.org/W3080253043","https://openalex.org/W3099553341","https://openalex.org/W3132782787","https://openalex.org/W3179429918","https://openalex.org/W3210361503","https://openalex.org/W4283217920"],"related_works":["https://openalex.org/W4368755698","https://openalex.org/W4297589944","https://openalex.org/W2964129930","https://openalex.org/W2757937181","https://openalex.org/W2472172556","https://openalex.org/W2417308975","https://openalex.org/W2406638334","https://openalex.org/W2109986081","https://openalex.org/W2042907335","https://openalex.org/W1808888439"],"abstract_inverted_index":{"The":[0,23],"probabilistic":[1,56,142],"estimation":[2],"for":[3,76],"multivariate":[4,24,143],"time":[5,25,112],"series":[6,26],"forecasting":[7,78,145],"has":[8],"recently":[9],"become":[10],"a":[11,73,94,115],"trend":[12],"in":[13,129],"various":[14],"research":[15],"fields,":[16],"such":[17],"as":[18,30,139],"traffic,":[19],"climate,":[20],"and":[21,34,55,84,103],"finance.":[22],"can":[27],"be":[28,43],"treated":[29],"an":[31],"interrelated":[32],"system,":[33],"it":[35,138],"is":[36],"significant":[37],"to":[38,42,50,136],"assume":[39],"each":[40,111],"variable":[41],"independent.":[44],"However,":[45],"most":[46],"existing":[47],"methods":[48],"fail":[49],"simultaneously":[51],"consider":[52],"spatial":[53,82],"dependencies":[54,83],"temporal":[57,85,144],"dynamics.":[58,86],"To":[59],"address":[60],"this":[61],"gap,":[62],"we":[63],"introduce":[64],"the":[65,90,98,106,122,140],"Graph":[66],"Convolution":[67],"Recurrent":[68],"Denoising":[69],"Diffusion":[70],"model":[71],"(GCRDD),":[72],"recurrent":[74,101],"framework":[75],"spatial-temporal":[77],"that":[79],"captures":[80],"both":[81],"Specifically,":[87],"GCRDD":[88],"incorporates":[89],"structural":[91],"dependency":[92],"into":[93],"hidden":[95],"state":[96],"using":[97],"graph-modified":[99],"gated":[100],"unit":[102],"samples":[104],"from":[105],"estimated":[107],"data":[108],"distribution":[109],"at":[110],"step":[113],"by":[114],"graph":[116],"conditional":[117],"diffusion":[118],"model.":[119],"We":[120],"reveal":[121],"comparative":[123],"experiment":[124],"performance":[125],"of":[126],"state-of-the-art":[127],"models":[128],"two":[130],"real-world":[131],"road":[132],"network":[133],"traffic":[134],"datasets":[135],"demonstrate":[137],"competitive":[141],"framework.":[146]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388348965","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1}],"updated_date":"2024-11-30T10:54:28.846816","created_date":"2023-11-05"}