{"id":"https://openalex.org/W4388340213","doi":"https://doi.org/10.1007/978-3-031-46661-8_13","title":"FastNER: Speeding up Inferences for Named Entity Recognition Tasks","display_name":"FastNER: Speeding up Inferences for Named Entity Recognition Tasks","publication_year":2023,"publication_date":"2023-01-01","ids":{"openalex":"https://openalex.org/W4388340213","doi":"https://doi.org/10.1007/978-3-031-46661-8_13"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-031-46661-8_13","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"book-chapter","type_crossref":"book-chapter","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100421234","display_name":"Yuming Zhang","orcid":"https://orcid.org/0000-0002-6078-7357"},"institutions":[{"id":"https://openalex.org/I180726961","display_name":"Shenzhen University","ror":"https://ror.org/01vy4gh70","country_code":"CN","type":"education","lineage":["https://openalex.org/I180726961"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Yuming Zhang","raw_affiliation_strings":["College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China"],"affiliations":[{"raw_affiliation_string":"College of Computer Science and Software Engineering, Shenzhen University, Shenzhen, China","institution_ids":["https://openalex.org/I180726961"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5101883052","display_name":"Xiangxiang Gao","orcid":"https://orcid.org/0000-0003-4402-9764"},"institutions":[{"id":"https://openalex.org/I183067930","display_name":"Shanghai Jiao Tong University","ror":"https://ror.org/0220qvk04","country_code":"CN","type":"education","lineage":["https://openalex.org/I183067930"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiangxiang Gao","raw_affiliation_strings":["Shanghai Jiaotong University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"Shanghai Jiaotong University, Shanghai, China","institution_ids":["https://openalex.org/I183067930"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100339289","display_name":"Wei Zhu","orcid":"https://orcid.org/0000-0002-6389-6866"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"education","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Wei Zhu","raw_affiliation_strings":["East China Normal University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"East China Normal University, Shanghai, China","institution_ids":["https://openalex.org/I66867065"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5100344628","display_name":"Xiaoling Wang","orcid":"https://orcid.org/0000-0002-4594-6946"},"institutions":[{"id":"https://openalex.org/I66867065","display_name":"East China Normal University","ror":"https://ror.org/02n96ep67","country_code":"CN","type":"education","lineage":["https://openalex.org/I66867065"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Xiaoling Wang","raw_affiliation_strings":["East China Normal University, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"East China Normal University, Shanghai, China","institution_ids":["https://openalex.org/I66867065"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":3,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":5000,"currency":"EUR","value_usd":5392,"provenance":"doaj"},"apc_paid":null,"fwci":2.476,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.770248,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":80,"max":85},"biblio":{"volume":null,"issue":null,"first_page":"185","last_page":"199"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10028","display_name":"Natural Language Processing","score":0.9998,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11719","display_name":"Data Quality Assessment and Improvement","score":0.9976,"subfield":{"id":"https://openalex.org/subfields/1803","display_name":"Management Science and Operations Research"},"field":{"id":"https://openalex.org/fields/18","display_name":"Decision Sciences"},"domain":{"id":"https://openalex.org/domains/2","display_name":"Social Sciences"}},{"id":"https://openalex.org/T10181","display_name":"Statistical Machine Translation and Natural Language Processing","score":0.9963,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.5956359},{"id":"https://openalex.org/keywords/named-entity-recognition","display_name":"Named Entity Recognition","score":0.582484},{"id":"https://openalex.org/keywords/speedup","display_name":"Speedup","score":0.4355742}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.9008533},{"id":"https://openalex.org/C2776214188","wikidata":"https://www.wikidata.org/wiki/Q408386","display_name":"Inference","level":2,"score":0.6510769},{"id":"https://openalex.org/C2779135771","wikidata":"https://www.wikidata.org/wiki/Q403574","display_name":"Named-entity recognition","level":3,"score":0.6422519},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.5956359},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.5030655},{"id":"https://openalex.org/C68339613","wikidata":"https://www.wikidata.org/wiki/Q1549489","display_name":"Speedup","level":2,"score":0.4355742},{"id":"https://openalex.org/C82876162","wikidata":"https://www.wikidata.org/wiki/Q17096504","display_name":"Latency (audio)","level":2,"score":0.42844778},{"id":"https://openalex.org/C2780451532","wikidata":"https://www.wikidata.org/wiki/Q759676","display_name":"Task (project management)","level":2,"score":0.404371},{"id":"https://openalex.org/C204321447","wikidata":"https://www.wikidata.org/wiki/Q30642","display_name":"Natural language processing","level":1,"score":0.37378877},{"id":"https://openalex.org/C119857082","wikidata":"https://www.wikidata.org/wiki/Q2539","display_name":"Machine learning","level":1,"score":0.3241865},{"id":"https://openalex.org/C173608175","wikidata":"https://www.wikidata.org/wiki/Q232661","display_name":"Parallel computing","level":1,"score":0.167021},{"id":"https://openalex.org/C187736073","wikidata":"https://www.wikidata.org/wiki/Q2920921","display_name":"Management","level":1,"score":0.0},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C162324750","wikidata":"https://www.wikidata.org/wiki/Q8134","display_name":"Economics","level":0,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1007/978-3-031-46661-8_13","pdf_url":null,"source":{"id":"https://openalex.org/S106296714","display_name":"Lecture notes in computer science","issn_l":"0302-9743","issn":["0302-9743","1611-3349"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310319900","host_organization_name":"Springer Science+Business Media","host_organization_lineage":["https://openalex.org/P4310319965","https://openalex.org/P4310319900"],"host_organization_lineage_names":["Springer Nature","Springer Science+Business Media"],"type":"book series"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/9","display_name":"Industry, innovation and infrastructure","score":0.54}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":18,"referenced_works":["https://openalex.org/W2144578941","https://openalex.org/W2163107094","https://openalex.org/W2923014074","https://openalex.org/W2962677625","https://openalex.org/W2970645034","https://openalex.org/W2981812042","https://openalex.org/W2984450720","https://openalex.org/W2998103904","https://openalex.org/W3034292689","https://openalex.org/W3035030897","https://openalex.org/W3035038672","https://openalex.org/W3035375600","https://openalex.org/W3102725307","https://openalex.org/W3154971029","https://openalex.org/W3214254540","https://openalex.org/W4287887900","https://openalex.org/W4372338244","https://openalex.org/W4385565465"],"related_works":["https://openalex.org/W98480971","https://openalex.org/W3176411177","https://openalex.org/W3128807919","https://openalex.org/W3035501883","https://openalex.org/W3008625068","https://openalex.org/W2164382479","https://openalex.org/W2150291671","https://openalex.org/W2097707447","https://openalex.org/W2058965144","https://openalex.org/W2027972911"],"abstract_inverted_index":{"BERT":[0,70,129,174,191],"and":[1,80,199],"its":[2],"variants":[3],"are":[4,151,197],"the":[5,33,39,44,53,96,116,134,137,168,172,188,201],"most":[6],"performing":[7],"models":[8,28],"for":[9,25,65,95,115,128,206],"named":[10],"entity":[11],"recognition":[12],"(NER),":[13],"a":[14,62,69,87,122],"fundamental":[15],"information":[16],"extraction":[17],"task.":[18],"We":[19,139],"must":[20],"apply":[21],"inference":[22,189],"speedup":[23],"methods":[24],"BERT-based":[26],"NER":[27,72,78,82,146,153,176],"to":[29,41,47,91],"be":[30],"deployed":[31],"in":[32,136],"industrial":[34],"setting.":[35],"Early":[36],"exiting":[37,67,126,182],"allows":[38],"model":[40],"use":[42],"only":[43],"shallow":[45],"layers":[46],"process":[48],"easy":[49],"samples,":[50],"thus":[51],"reducing":[52],"average":[54],"latency.":[55],"In":[56],"this":[57],"work,":[58],"we":[59,85,120],"introduce":[60,86,121],"FastNER,":[61],"novel":[63],"framework":[64],"early":[66,125,181],"with":[68],"biaffine":[71,99,130,175,192],"model,":[73,131],"which":[74,132,150],"supports":[75],"both":[76],"flat":[77],"tasks":[79],"nested":[81,152],"tasks.":[83,154],"First,":[84],"convolutional":[88,162],"bypass":[89,163],"module":[90],"provide":[92],"suitable":[93],"features":[94],"current":[97],"layer's":[98],"prediction":[100],"head.":[101],"This":[102],"way,":[103],"an":[104],"intermediate":[105],"layer":[106],"can":[107,165,184],"focus":[108],"more":[109],"on":[110,143],"delivering":[111],"high-quality":[112],"semantic":[113],"representations":[114],"next":[117],"layer.":[118],"Second,":[119],"series":[123],"of":[124,149,171,190,203],"mechanisms":[127,183],"is":[133],"first":[135],"literature.":[138],"conduct":[140],"extensive":[141],"experiments":[142,156],"6":[144],"benchmark":[145],"datasets,":[147],"3":[148],"The":[155],"show":[157],"that:":[158],"(a)":[159],"Our":[160],"proposed":[161,180],"method":[164],"significantly":[166],"improve":[167],"overall":[169],"performances":[170],"multi-exit":[173],"model.":[177,193],"(b)":[178],"our":[179,204,207],"effectively":[185],"speed":[186],"up":[187],"Comprehensive":[194],"ablation":[195],"studies":[196],"conducted":[198],"demonstrate":[200],"validity":[202],"design":[205],"FastNER":[208],"framework.":[209]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4388340213","counts_by_year":[{"year":2024,"cited_by_count":2}],"updated_date":"2024-11-28T10:12:27.268992","created_date":"2023-11-05"}