{"id":"https://openalex.org/W4402782103","doi":"https://doi.org/10.1002/widm.1558","title":"Continual learning and its industrial applications: A selective review","display_name":"Continual learning and its industrial applications: A selective review","publication_year":2024,"publication_date":"2024-09-23","ids":{"openalex":"https://openalex.org/W4402782103","doi":"https://doi.org/10.1002/widm.1558"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/widm.1558","pdf_url":null,"source":{"id":"https://openalex.org/S2505707916","display_name":"Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery","issn_l":"1942-4795","issn":["1942-4795","1942-4787"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"review","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5113379532","display_name":"J. Lian","orcid":null},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"J. Lian","raw_affiliation_strings":["Department of Statistics Virginia Tech Blacksburg Virginia USA"],"affiliations":[{"raw_affiliation_string":"Department of Statistics Virginia Tech Blacksburg Virginia USA","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5073078596","display_name":"K. Choi","orcid":null},"institutions":[{"id":"https://openalex.org/I145325580","display_name":"Deloitte (United States)","ror":"https://ror.org/03xkm6e60","country_code":"US","type":"company","lineage":["https://openalex.org/I145325580","https://openalex.org/I4210139068"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"K. Choi","raw_affiliation_strings":["Deloitte & Touche LLP Mclean Virginia USA"],"affiliations":[{"raw_affiliation_string":"Deloitte & Touche LLP Mclean Virginia USA","institution_ids":["https://openalex.org/I145325580"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5091547795","display_name":"Balaji Veeramani","orcid":null},"institutions":[{"id":"https://openalex.org/I145325580","display_name":"Deloitte (United States)","ror":"https://ror.org/03xkm6e60","country_code":"US","type":"company","lineage":["https://openalex.org/I145325580","https://openalex.org/I4210139068"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"B. Veeramani","raw_affiliation_strings":["Deloitte & Touche LLP Mclean Virginia USA"],"affiliations":[{"raw_affiliation_string":"Deloitte & Touche LLP Mclean Virginia USA","institution_ids":["https://openalex.org/I145325580"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5113656728","display_name":"A. Hu","orcid":null},"institutions":[{"id":"https://openalex.org/I145325580","display_name":"Deloitte (United States)","ror":"https://ror.org/03xkm6e60","country_code":"US","type":"company","lineage":["https://openalex.org/I145325580","https://openalex.org/I4210139068"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"A. Hu","raw_affiliation_strings":["Deloitte & Touche LLP Mclean Virginia USA"],"affiliations":[{"raw_affiliation_string":"Deloitte & Touche LLP Mclean Virginia USA","institution_ids":["https://openalex.org/I145325580"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5092119009","display_name":"Sathvik Murli","orcid":null},"institutions":[{"id":"https://openalex.org/I145325580","display_name":"Deloitte (United States)","ror":"https://ror.org/03xkm6e60","country_code":"US","type":"company","lineage":["https://openalex.org/I145325580","https://openalex.org/I4210139068"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"S. Murli","raw_affiliation_strings":["Deloitte & Touche LLP Mclean Virginia USA"],"affiliations":[{"raw_affiliation_string":"Deloitte & Touche LLP Mclean Virginia USA","institution_ids":["https://openalex.org/I145325580"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5046745641","display_name":"L. Freeman","orcid":null},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"L. Freeman","raw_affiliation_strings":["Department of Statistics Virginia Tech Blacksburg Virginia USA"],"affiliations":[{"raw_affiliation_string":"Department of Statistics Virginia Tech Blacksburg Virginia USA","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5107856178","display_name":"E. Bowen","orcid":null},"institutions":[{"id":"https://openalex.org/I145325580","display_name":"Deloitte (United States)","ror":"https://ror.org/03xkm6e60","country_code":"US","type":"company","lineage":["https://openalex.org/I145325580","https://openalex.org/I4210139068"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"E. Bowen","raw_affiliation_strings":["Deloitte & Touche LLP Mclean Virginia USA"],"affiliations":[{"raw_affiliation_string":"Deloitte & Touche LLP Mclean Virginia USA","institution_ids":["https://openalex.org/I145325580"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5003817085","display_name":"Xinwei Deng","orcid":"https://orcid.org/0000-0002-1560-2405"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"education","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"X. Deng","raw_affiliation_strings":["Department of Statistics Virginia Tech Blacksburg Virginia USA"],"affiliations":[{"raw_affiliation_string":"Department of Statistics Virginia Tech Blacksburg Virginia USA","institution_ids":["https://openalex.org/I859038795"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":2,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":4070,"currency":"USD","value_usd":4070,"provenance":"doaj"},"apc_paid":null,"fwci":0.0,"has_fulltext":false,"cited_by_count":0,"citation_normalized_percentile":{"value":0.0,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":0,"max":85},"biblio":{"volume":"14","issue":"6","first_page":null,"last_page":null},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T12676","display_name":"Theory and Applications of Extreme Learning Machines","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T12676","display_name":"Theory and Applications of Extreme Learning Machines","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11307","display_name":"Advances in Transfer Learning and Domain Adaptation","score":0.9841,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/incremental-learning","display_name":"Incremental Learning","score":0.60303},{"id":"https://openalex.org/keywords/semi-supervised-learning","display_name":"Semi-Supervised Learning","score":0.582959},{"id":"https://openalex.org/keywords/meta-learning","display_name":"Meta-Learning","score":0.574331},{"id":"https://openalex.org/keywords/representation-learning","display_name":"Representation Learning","score":0.574198},{"id":"https://openalex.org/keywords/unsupervised-learning","display_name":"Unsupervised Learning","score":0.55439}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.8140778},{"id":"https://openalex.org/C2522767166","wikidata":"https://www.wikidata.org/wiki/Q2374463","display_name":"Data science","level":1,"score":0.44066718},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.35992688},{"id":"https://openalex.org/C107457646","wikidata":"https://www.wikidata.org/wiki/Q207434","display_name":"Human\u2013computer interaction","level":1,"score":0.32170865}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/widm.1558","pdf_url":null,"source":{"id":"https://openalex.org/S2505707916","display_name":"Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery","issn_l":"1942-4795","issn":["1942-4795","1942-4787"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Industry, innovation and infrastructure","id":"https://metadata.un.org/sdg/9","score":0.58}],"grants":[{"funder":"https://openalex.org/F4320306076","funder_display_name":"National Science Foundation","award_id":"DMS\u20102311187"}],"datasets":[],"versions":[],"referenced_works_count":53,"referenced_works":["https://openalex.org/W1584308190","https://openalex.org/W1973445088","https://openalex.org/W1977792424","https://openalex.org/W2007339694","https://openalex.org/W2099940443","https://openalex.org/W2108598243","https://openalex.org/W2150856297","https://openalex.org/W2152161678","https://openalex.org/W2160660844","https://openalex.org/W2164700406","https://openalex.org/W2465978385","https://openalex.org/W2473930607","https://openalex.org/W2514852614","https://openalex.org/W2556468274","https://openalex.org/W2560647685","https://openalex.org/W2593382986","https://openalex.org/W2617118670","https://openalex.org/W2789828921","https://openalex.org/W2802235618","https://openalex.org/W2891707612","https://openalex.org/W2949995560","https://openalex.org/W2962750014","https://openalex.org/W2963072899","https://openalex.org/W2963242190","https://openalex.org/W2963412210","https://openalex.org/W2963588172","https://openalex.org/W2964189064","https://openalex.org/W2978098801","https://openalex.org/W2982242214","https://openalex.org/W2982410595","https://openalex.org/W3009987980","https://openalex.org/W3031989616","https://openalex.org/W3096831136","https://openalex.org/W3102608064","https://openalex.org/W3166861698","https://openalex.org/W3172053684","https://openalex.org/W3187986157","https://openalex.org/W3212560468","https://openalex.org/W37018364","https://openalex.org/W4239987398","https://openalex.org/W4282813397","https://openalex.org/W4285530011","https://openalex.org/W4289533844","https://openalex.org/W4293932561","https://openalex.org/W4295883599","https://openalex.org/W4303083268","https://openalex.org/W4308505810","https://openalex.org/W4310736693","https://openalex.org/W4312238419","https://openalex.org/W4312889780","https://openalex.org/W4323064896","https://openalex.org/W4323316080","https://openalex.org/W4386065591"],"related_works":["https://openalex.org/W4396701345","https://openalex.org/W4396696052","https://openalex.org/W4395014643","https://openalex.org/W4391375266","https://openalex.org/W2748952813","https://openalex.org/W2390279801","https://openalex.org/W2382290278","https://openalex.org/W2376932109","https://openalex.org/W2358668433","https://openalex.org/W2001405890"],"abstract_inverted_index":{"Abstract":[0],"In":[1,126],"many":[2],"industrial":[3,140,165],"applications,":[4,153],"datasets":[5],"are":[6],"often":[7,59],"obtained":[8,122],"in":[9],"a":[10,14,25,40,131,156],"sequence":[11],"associated":[12],"with":[13],"series":[15],"of":[16,49,71,134,178],"similar":[17],"but":[18],"different":[19],"tasks.":[20],"To":[21],"model":[22],"these":[23,110],"datasets,":[24],"machine\u2010learning":[26],"algorithm,":[27],"which":[28],"performed":[29],"well":[30],"on":[31,42,146],"the":[32,43,47,50,60,68,79,84,107,113,120,148,159,163],"previous":[33,124],"task,":[34],"may":[35],"not":[36],"have":[37,112],"as":[38],"strong":[39],"performance":[41],"current":[44,149,160],"task.":[45,125],"When":[46],"architecture":[48,62],"algorithm":[51,80],"is":[52,169],"trained":[53],"to":[54,56,64,77,106,115],"adapt":[55],"new":[57],"tasks,":[58],"whole":[61],"needs":[63],"be":[65,74,145],"revised":[66],"and":[67,92,138,151,154,162,180,189],"old":[69],"knowledge":[70],"modeling":[72],"can":[73,87],"forgotten.":[75],"Efforts":[76],"make":[78],"work":[81],"for":[82],"all":[83],"relevant":[85],"tasks":[86],"cost":[88],"large":[89],"computational":[90],"resources":[91],"data":[93],"storage.":[94],"Continual":[95],"learning,":[96,104],"also":[97],"called":[98],"lifelong":[99,103],"learning":[100,136],"or":[101],"continual":[102,135],"refers":[105],"concept":[108],"that":[109],"algorithms":[111],"ability":[114],"continually":[116],"learn":[117],"without":[118],"forgetting":[119],"information":[121],"from":[123],"this":[127],"work,":[128],"we":[129],"provide":[130],"broad":[132],"view":[133],"techniques":[137],"their":[139],"applications.":[141],"Our":[142],"focus":[143],"will":[144],"reviewing":[147],"methodologies":[150],"existing":[152],"identifying":[155],"gap":[157],"between":[158],"methodology":[161],"modern":[164],"needs.":[166],"This":[167],"article":[168],"categorized":[170],"under:":[171],"Technologies":[172],">":[173,182,187],"Artificial":[174],"Intelligence":[175],"Fundamental":[176],"Concepts":[177],"Data":[179],"Knowledge":[181,183],"Representation":[184],"Application":[185],"Areas":[186],"Business":[188],"Industry":[190]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W4402782103","counts_by_year":[],"updated_date":"2024-12-03T04:20:04.527594","created_date":"2024-09-25"}