{"id":"https://openalex.org/W3184238576","doi":"https://doi.org/10.1002/sam.11536","title":"Negative binomial graphical model with excess zeros","display_name":"Negative binomial graphical model with excess zeros","publication_year":2021,"publication_date":"2021-07-21","ids":{"openalex":"https://openalex.org/W3184238576","doi":"https://doi.org/10.1002/sam.11536","mag":"3184238576"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/sam.11536","pdf_url":null,"source":{"id":"https://openalex.org/S40788348","display_name":"Statistical Analysis and Data Mining The ASA Data Science Journal","issn_l":"1932-1864","issn":["1932-1864","1932-1872"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5007981046","display_name":"Beomjin Park","orcid":"https://orcid.org/0000-0003-2081-2316"},"institutions":[{"id":"https://openalex.org/I124633538","display_name":"University of Seoul","ror":"https://ror.org/05en5nh73","country_code":"KR","type":"education","lineage":["https://openalex.org/I124633538"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Beomjin Park","raw_affiliation_strings":["Department of Statistics, University of Seoul, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of Seoul, Seoul, South Korea","institution_ids":["https://openalex.org/I124633538"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5067277192","display_name":"Hosik Choi","orcid":"https://orcid.org/0000-0003-0589-8043"},"institutions":[{"id":"https://openalex.org/I124633538","display_name":"University of Seoul","ror":"https://ror.org/05en5nh73","country_code":"KR","type":"education","lineage":["https://openalex.org/I124633538"]}],"countries":["KR"],"is_corresponding":false,"raw_author_name":"Hosik Choi","raw_affiliation_strings":["Graduate School, Department of Urban Big Data Convergence, University of Seoul, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"Graduate School, Department of Urban Big Data Convergence, University of Seoul, Seoul, South Korea","institution_ids":["https://openalex.org/I124633538"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5074268630","display_name":"Changyi Park","orcid":"https://orcid.org/0000-0002-5210-4739"},"institutions":[{"id":"https://openalex.org/I124633538","display_name":"University of Seoul","ror":"https://ror.org/05en5nh73","country_code":"KR","type":"education","lineage":["https://openalex.org/I124633538"]}],"countries":["KR"],"is_corresponding":true,"raw_author_name":"Changyi Park","raw_affiliation_strings":["Department of Statistics, University of Seoul, Seoul, South Korea"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, University of Seoul, Seoul, South Korea","institution_ids":["https://openalex.org/I124633538"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5074268630"],"corresponding_institution_ids":["https://openalex.org/I124633538"],"apc_list":{"value":3760,"currency":"USD","value_usd":3760,"provenance":"doaj"},"apc_paid":null,"fwci":0.228,"has_fulltext":false,"cited_by_count":2,"citation_normalized_percentile":{"value":0.444234,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":67,"max":72},"biblio":{"volume":"14","issue":"5","first_page":"449","last_page":"465"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.996,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9904,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/graphical-model","display_name":"Graphical model","score":0.9323448},{"id":"https://openalex.org/keywords/markov-random-field","display_name":"Markov random field","score":0.5950613},{"id":"https://openalex.org/keywords/binomial","display_name":"Binomial (polynomial)","score":0.53566086}],"concepts":[{"id":"https://openalex.org/C155846161","wikidata":"https://www.wikidata.org/wiki/Q1143367","display_name":"Graphical model","level":2,"score":0.9323448},{"id":"https://openalex.org/C199335787","wikidata":"https://www.wikidata.org/wiki/Q743364","display_name":"Negative binomial distribution","level":3,"score":0.6865866},{"id":"https://openalex.org/C33643355","wikidata":"https://www.wikidata.org/wiki/Q5176731","display_name":"Count data","level":3,"score":0.6527524},{"id":"https://openalex.org/C100906024","wikidata":"https://www.wikidata.org/wiki/Q205692","display_name":"Poisson distribution","level":2,"score":0.6336919},{"id":"https://openalex.org/C2778045648","wikidata":"https://www.wikidata.org/wiki/Q176827","display_name":"Markov random field","level":4,"score":0.5950613},{"id":"https://openalex.org/C2781315470","wikidata":"https://www.wikidata.org/wiki/Q193623","display_name":"Binomial (polynomial)","level":2,"score":0.53566086},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.49387008},{"id":"https://openalex.org/C132525143","wikidata":"https://www.wikidata.org/wiki/Q141488","display_name":"Graph","level":2,"score":0.45977318},{"id":"https://openalex.org/C98763669","wikidata":"https://www.wikidata.org/wiki/Q176645","display_name":"Markov chain","level":2,"score":0.45977104},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.45816687},{"id":"https://openalex.org/C88721176","wikidata":"https://www.wikidata.org/wiki/Q966010","display_name":"Zero-inflated model","level":4,"score":0.4310401},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4296972},{"id":"https://openalex.org/C80444323","wikidata":"https://www.wikidata.org/wiki/Q2878974","display_name":"Theoretical computer science","level":1,"score":0.2823069},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.25732854},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.23198089},{"id":"https://openalex.org/C73269764","wikidata":"https://www.wikidata.org/wiki/Q954529","display_name":"Poisson regression","level":3,"score":0.10084015},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.0875296},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0},{"id":"https://openalex.org/C124504099","wikidata":"https://www.wikidata.org/wiki/Q56933","display_name":"Image segmentation","level":3,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/sam.11536","pdf_url":null,"source":{"id":"https://openalex.org/S40788348","display_name":"Statistical Analysis and Data Mining The ASA Data Science Journal","issn_l":"1932-1864","issn":["1932-1864","1932-1872"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/1","score":0.64,"display_name":"No poverty"}],"grants":[{"funder":"https://openalex.org/F4320321346","funder_display_name":"University of Seoul","award_id":"2018 Research Fund"}],"datasets":[],"versions":[],"referenced_works_count":50,"referenced_works":["https://openalex.org/W1644145788","https://openalex.org/W1958419648","https://openalex.org/W1974858978","https://openalex.org/W1980345828","https://openalex.org/W1980451999","https://openalex.org/W1983514447","https://openalex.org/W1983865742","https://openalex.org/W1998367823","https://openalex.org/W2005903772","https://openalex.org/W2010824638","https://openalex.org/W2024761771","https://openalex.org/W2030572260","https://openalex.org/W2049288534","https://openalex.org/W2051617800","https://openalex.org/W2057614015","https://openalex.org/W2072971818","https://openalex.org/W2092247630","https://openalex.org/W2092921197","https://openalex.org/W2097360283","https://openalex.org/W2112814716","https://openalex.org/W2114220616","https://openalex.org/W2123851279","https://openalex.org/W2130561717","https://openalex.org/W2134199473","https://openalex.org/W2137892504","https://openalex.org/W2138905229","https://openalex.org/W2150002853","https://openalex.org/W2155047372","https://openalex.org/W2258008046","https://openalex.org/W2260541909","https://openalex.org/W2312269541","https://openalex.org/W2323052220","https://openalex.org/W2462159460","https://openalex.org/W2520712671","https://openalex.org/W2562162676","https://openalex.org/W2767225737","https://openalex.org/W2768318902","https://openalex.org/W2952350108","https://openalex.org/W2962919278","https://openalex.org/W2969851703","https://openalex.org/W3098834468","https://openalex.org/W3098888484","https://openalex.org/W3101461832","https://openalex.org/W3103967557","https://openalex.org/W4214489112","https://openalex.org/W4244313837","https://openalex.org/W4249661016","https://openalex.org/W4294541781","https://openalex.org/W4301588852","https://openalex.org/W755741475"],"related_works":["https://openalex.org/W4311467342","https://openalex.org/W4311363496","https://openalex.org/W3184238576","https://openalex.org/W3134768068","https://openalex.org/W3124138156","https://openalex.org/W2903731864","https://openalex.org/W2278258052","https://openalex.org/W2191151243","https://openalex.org/W1983865742","https://openalex.org/W1976942539"],"abstract_inverted_index":{"Abstract":[0],"Markov":[1],"random":[2,32],"field":[3],"or":[4],"undirected":[5],"graphical":[6,38,45,65,86],"models":[7],"(GM)":[8],"are":[9,57],"a":[10,44,70,80,97,121],"popular":[11],"class":[12],"of":[13,92,100,128],"GM":[14],"useful":[15],"in":[16,94],"various":[17],"fields":[18],"because":[19],"they":[20],"provide":[21],"an":[22],"intuitive":[23],"and":[24],"interpretable":[25],"graph":[26],"expressing":[27],"the":[28,62,90,101,117,126],"complex":[29],"relationship":[30],"between":[31],"variables.":[33],"The":[34],"zero\u2010inflated":[35,81],"local":[36,63,82],"Poisson":[37,64],"model":[39,46,66],"has":[40],"been":[41],"proposed":[42],"as":[43,54],"for":[47,116,131],"count":[48,55,137],"data":[49,56,138,149],"with":[50,139],"excess":[51,140],"zeros.":[52,141],"However,":[53],"often":[58],"characterized":[59],"by":[60],"over\u2010dispersion,":[61],"may":[67],"suffer":[68],"from":[69,135],"poor":[71],"fit":[72],"to":[73,89,147,150],"data.":[74],"In":[75],"this":[76],"paper,":[77],"we":[78,107,124],"propose":[79],"negative":[83],"binomial":[84],"(NB)":[85],"model.":[87],"Due":[88],"dependencies":[91],"parameters":[93],"our":[95,129,145],"models,":[96],"direct":[98],"optimization":[99],"objective":[102],"function":[103],"is":[104],"difficult.":[105],"Instead,":[106],"devise":[108],"expectation\u2010minimization":[109],"algorithms":[110],"based":[111],"on":[112],"two":[113],"different":[114],"parametrizations":[115],"NB":[118],"distribution.":[119],"Through":[120],"simulation":[122],"study,":[123],"illustrate":[125],"effectiveness":[127],"method":[130,146],"learning":[132],"network":[133,153],"structure":[134],"over\u2010dispersed":[136],"We":[142],"further":[143],"apply":[144],"real":[148],"estimate":[151],"its":[152],"structure.":[154]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3184238576","counts_by_year":[{"year":2023,"cited_by_count":2}],"updated_date":"2024-12-16T05:47:29.469975","created_date":"2021-08-02"}