{"id":"https://openalex.org/W2964219675","doi":"https://doi.org/10.1002/sam.11370","title":"Sparse estimation of multivariate Poisson log\u2010normal models from count data","display_name":"Sparse estimation of multivariate Poisson log\u2010normal models from count data","publication_year":2018,"publication_date":"2018-01-10","ids":{"openalex":"https://openalex.org/W2964219675","doi":"https://doi.org/10.1002/sam.11370","mag":"2964219675"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/sam.11370","pdf_url":null,"source":{"id":"https://openalex.org/S40788348","display_name":"Statistical Analysis and Data Mining The ASA Data Science Journal","issn_l":"1932-1864","issn":["1932-1864","1932-1872"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/1602.07337","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5101595027","display_name":"Hao Wu","orcid":"https://orcid.org/0000-0002-4392-1307"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"funder","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Hao Wu","raw_affiliation_strings":["Department of Electrical and Computer Engineering, Virginia Tech, Arlington, Virginia","Discovery Analytics Center, Virginia Tech, Arlington, Virginia 22203, USA"],"affiliations":[{"raw_affiliation_string":"Department of Electrical and Computer Engineering, Virginia Tech, Arlington, Virginia","institution_ids":["https://openalex.org/I859038795"]},{"raw_affiliation_string":"Discovery Analytics Center, Virginia Tech, Arlington, Virginia 22203, USA","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5003817085","display_name":"Xinwei Deng","orcid":"https://orcid.org/0000-0002-1560-2405"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"funder","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":true,"raw_author_name":"Xinwei Deng","raw_affiliation_strings":["Department of Statistics, Virginia Tech, Blacksburg, Virginia"],"affiliations":[{"raw_affiliation_string":"Department of Statistics, Virginia Tech, Blacksburg, Virginia","institution_ids":["https://openalex.org/I859038795"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5035052603","display_name":"Naren Ramakrishnan","orcid":"https://orcid.org/0000-0002-1821-9743"},"institutions":[{"id":"https://openalex.org/I859038795","display_name":"Virginia Tech","ror":"https://ror.org/02smfhw86","country_code":"US","type":"funder","lineage":["https://openalex.org/I859038795"]}],"countries":["US"],"is_corresponding":false,"raw_author_name":"Naren Ramakrishnan","raw_affiliation_strings":["Department of Computer Science, Virginia Tech, Arlington, Virginia","Discovery Analytics Center, Virginia Tech, Arlington, Virginia 22203, USA"],"affiliations":[{"raw_affiliation_string":"Department of Computer Science, Virginia Tech, Arlington, Virginia","institution_ids":["https://openalex.org/I859038795"]},{"raw_affiliation_string":"Discovery Analytics Center, Virginia Tech, Arlington, Virginia 22203, USA","institution_ids":["https://openalex.org/I859038795"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":["https://openalex.org/A5003817085"],"corresponding_institution_ids":["https://openalex.org/I859038795"],"apc_list":{"value":3760,"currency":"USD","value_usd":3760},"apc_paid":null,"fwci":1.257,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":12,"citation_normalized_percentile":{"value":0.914088,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":86,"max":87},"biblio":{"volume":"11","issue":"2","first_page":"66","last_page":"77"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10243","display_name":"Statistical Methods and Bayesian Inference","score":0.9995,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11901","display_name":"Bayesian Methods and Mixture Models","score":0.9986,"subfield":{"id":"https://openalex.org/subfields/1702","display_name":"Artificial Intelligence"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10136","display_name":"Statistical Methods and Inference","score":0.9984,"subfield":{"id":"https://openalex.org/subfields/2613","display_name":"Statistics and Probability"},"field":{"id":"https://openalex.org/fields/26","display_name":"Mathematics"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/univariate","display_name":"Univariate","score":0.640049}],"concepts":[{"id":"https://openalex.org/C33643355","wikidata":"https://www.wikidata.org/wiki/Q5176731","display_name":"Count data","level":3,"score":0.8784354},{"id":"https://openalex.org/C161584116","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate statistics","level":2,"score":0.8181138},{"id":"https://openalex.org/C199163554","wikidata":"https://www.wikidata.org/wiki/Q1681619","display_name":"Univariate","level":3,"score":0.640049},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.6282778},{"id":"https://openalex.org/C73269764","wikidata":"https://www.wikidata.org/wiki/Q954529","display_name":"Poisson regression","level":3,"score":0.5932798},{"id":"https://openalex.org/C177384507","wikidata":"https://www.wikidata.org/wiki/Q1149000","display_name":"Multivariate normal distribution","level":3,"score":0.5084733},{"id":"https://openalex.org/C100906024","wikidata":"https://www.wikidata.org/wiki/Q205692","display_name":"Poisson distribution","level":2,"score":0.49991226},{"id":"https://openalex.org/C51167844","wikidata":"https://www.wikidata.org/wiki/Q4422623","display_name":"Latent variable","level":2,"score":0.49541605},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.4653137},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.4502534},{"id":"https://openalex.org/C38180746","wikidata":"https://www.wikidata.org/wiki/Q1952580","display_name":"Multivariate analysis","level":2,"score":0.4193918},{"id":"https://openalex.org/C178650346","wikidata":"https://www.wikidata.org/wiki/Q201984","display_name":"Covariance","level":2,"score":0.41676328},{"id":"https://openalex.org/C2908647359","wikidata":"https://www.wikidata.org/wiki/Q2625603","display_name":"Population","level":2,"score":0.0},{"id":"https://openalex.org/C149923435","wikidata":"https://www.wikidata.org/wiki/Q37732","display_name":"Demography","level":1,"score":0.0},{"id":"https://openalex.org/C144024400","wikidata":"https://www.wikidata.org/wiki/Q21201","display_name":"Sociology","level":0,"score":0.0}],"mesh":[],"locations_count":2,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/sam.11370","pdf_url":null,"source":{"id":"https://openalex.org/S40788348","display_name":"Statistical Analysis and Data Mining The ASA Data Science Journal","issn_l":"1932-1864","issn":["1932-1864","1932-1872"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1602.07337","pdf_url":"http://arxiv.org/pdf/1602.07337","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":"http://arxiv.org/abs/1602.07337","pdf_url":"http://arxiv.org/pdf/1602.07337","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[{"funder":"https://openalex.org/F4320333051","funder_display_name":"Intelligence Advanced Research Projects Activity","award_id":"D12PC000337"}],"datasets":[],"versions":[],"referenced_works_count":34,"referenced_works":["https://openalex.org/W1197916086","https://openalex.org/W1987371344","https://openalex.org/W1999529874","https://openalex.org/W2006085716","https://openalex.org/W2009746375","https://openalex.org/W2018096278","https://openalex.org/W2020110803","https://openalex.org/W2020708932","https://openalex.org/W2028233321","https://openalex.org/W2032612424","https://openalex.org/W2038048419","https://openalex.org/W2051530877","https://openalex.org/W2053061982","https://openalex.org/W2056636001","https://openalex.org/W2059606882","https://openalex.org/W2081531193","https://openalex.org/W2091560152","https://openalex.org/W2100727290","https://openalex.org/W2114455774","https://openalex.org/W2116150816","https://openalex.org/W2119755537","https://openalex.org/W2122825543","https://openalex.org/W2132555912","https://openalex.org/W2135046866","https://openalex.org/W2137920997","https://openalex.org/W2156543150","https://openalex.org/W2165644552","https://openalex.org/W2170001223","https://openalex.org/W2170563643","https://openalex.org/W2323652708","https://openalex.org/W3098745759","https://openalex.org/W3101380508","https://openalex.org/W3103917751","https://openalex.org/W3125261624"],"related_works":["https://openalex.org/W4292722743","https://openalex.org/W4280555366","https://openalex.org/W3210390693","https://openalex.org/W3134844154","https://openalex.org/W3088295586","https://openalex.org/W3041987031","https://openalex.org/W2760114301","https://openalex.org/W1849881158","https://openalex.org/W1578743158","https://openalex.org/W157392704"],"abstract_inverted_index":{"Modeling":[0],"data":[1,107],"with":[2,76,121],"multivariate":[3,30,49,55],"count":[4,22,56,93],"responses":[5,37,57,94],"is":[6],"a":[7,48],"challenging":[8],"problem":[9],"because":[10],"of":[11,15,88,115],"the":[12,16,29,33,65,73,83,89,97,113,116],"discrete":[13],"nature":[14],"responses.":[17],"Existing":[18],"methods":[19],"for":[20,54],"univariate":[21],"response":[23],"cannot":[24],"be":[25,40],"easily":[26],"extended":[27],"to":[28,39,95,105,110],"case":[31],"since":[32],"dependence":[34],"among":[35,91],"multiple":[36,92],"needs":[38],"properly":[41],"accommodated.":[42],"In":[43],"this":[44],"paper,":[45],"we":[46],"propose":[47],"Poisson":[50],"log\u2010normal":[51],"regression":[52,66],"model":[53,85,98],"by":[58],"using":[59],"latent":[60,74],"variables.":[61],"By":[62],"simultaneously":[63],"estimating":[64],"coefficients":[67],"and":[68,103],"inverse":[69],"covariance":[70],"matrix":[71],"over":[72],"variables":[75],"an":[77],"efficient":[78],"Monte":[79],"Carlo":[80],"EM":[81],"algorithm,":[82],"proposed":[84,117],"takes":[86],"advantage":[87],"association":[90],"improve":[96],"prediction":[99],"accuracy.":[100],"Simulation":[101],"studies":[102],"applications":[104],"real\u2010world":[106],"are":[108],"conducted":[109],"systematically":[111],"evaluate":[112],"performance":[114],"method":[118],"in":[119],"comparison":[120],"conventional":[122],"methods.":[123]},"abstract_inverted_index_v3":null,"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2964219675","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":1},{"year":2022,"cited_by_count":2},{"year":2021,"cited_by_count":3},{"year":2020,"cited_by_count":2},{"year":2019,"cited_by_count":2}],"updated_date":"2025-02-25T10:08:51.955685","created_date":"2019-07-30"}