{"id":"https://openalex.org/W1986826403","doi":"https://doi.org/10.1002/sam.11144","title":"Multi-view predictive partitioning in high dimensions","display_name":"Multi-view predictive partitioning in high dimensions","publication_year":2012,"publication_date":"2012-05-03","ids":{"openalex":"https://openalex.org/W1986826403","doi":"https://doi.org/10.1002/sam.11144","mag":"1986826403"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/sam.11144","pdf_url":null,"source":{"id":"https://openalex.org/S40788348","display_name":"Statistical Analysis and Data Mining The ASA Data Science Journal","issn_l":"1932-1864","issn":["1932-1864","1932-1872"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":true,"oa_status":"green","oa_url":"http://arxiv.org/pdf/1202.0825.pdf","any_repository_has_fulltext":true},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5041664883","display_name":"Brian McWilliams","orcid":"https://orcid.org/0009-0002-7433-1702"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Brian McWilliams","raw_affiliation_strings":["Statistics Section, Department of Mathematics, Imperial College London, London, UK."],"affiliations":[{"raw_affiliation_string":"Statistics Section, Department of Mathematics, Imperial College London, London, UK.","institution_ids":["https://openalex.org/I47508984"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5010581004","display_name":"Giovanni Montana","orcid":"https://orcid.org/0000-0003-3942-3900"},"institutions":[{"id":"https://openalex.org/I47508984","display_name":"Imperial College London","ror":"https://ror.org/041kmwe10","country_code":"GB","type":"education","lineage":["https://openalex.org/I47508984"]}],"countries":["GB"],"is_corresponding":false,"raw_author_name":"Giovanni Montana","raw_affiliation_strings":["Statistics Section, Department of Mathematics, Imperial College London, London, UK."],"affiliations":[{"raw_affiliation_string":"Statistics Section, Department of Mathematics, Imperial College London, London, UK.","institution_ids":["https://openalex.org/I47508984"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":3760,"currency":"USD","value_usd":3760,"provenance":"doaj"},"apc_paid":null,"fwci":1.37,"has_fulltext":true,"fulltext_origin":"ngrams","cited_by_count":7,"citation_normalized_percentile":{"value":0.684212,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":82,"max":83},"biblio":{"volume":"5","issue":"4","first_page":"304","last_page":"321"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10057","display_name":"Face and Expression Recognition","score":0.9905,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10689","display_name":"Remote-Sensing Image Classification","score":0.9867,"subfield":{"id":"https://openalex.org/subfields/2214","display_name":"Media Technology"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T12114","display_name":"Sensory Analysis and Statistical Methods","score":0.9838,"subfield":{"id":"https://openalex.org/subfields/1106","display_name":"Food Science"},"field":{"id":"https://openalex.org/fields/11","display_name":"Agricultural and Biological Sciences"},"domain":{"id":"https://openalex.org/domains/1","display_name":"Life Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/benchmark","display_name":"Benchmark (surveying)","score":0.583948},{"id":"https://openalex.org/keywords/statistic","display_name":"Statistic","score":0.46825844},{"id":"https://openalex.org/keywords/data-point","display_name":"Data point","score":0.43279508}],"concepts":[{"id":"https://openalex.org/C124101348","wikidata":"https://www.wikidata.org/wiki/Q172491","display_name":"Data mining","level":1,"score":0.63771385},{"id":"https://openalex.org/C73555534","wikidata":"https://www.wikidata.org/wiki/Q622825","display_name":"Cluster analysis","level":2,"score":0.6321089},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.6189858},{"id":"https://openalex.org/C185798385","wikidata":"https://www.wikidata.org/wiki/Q1161707","display_name":"Benchmark (surveying)","level":2,"score":0.583948},{"id":"https://openalex.org/C155512373","wikidata":"https://www.wikidata.org/wiki/Q287450","display_name":"Residual","level":2,"score":0.48572236},{"id":"https://openalex.org/C89128539","wikidata":"https://www.wikidata.org/wiki/Q1949963","display_name":"Statistic","level":2,"score":0.46825844},{"id":"https://openalex.org/C70518039","wikidata":"https://www.wikidata.org/wiki/Q16000077","display_name":"Dimensionality reduction","level":2,"score":0.45136264},{"id":"https://openalex.org/C21080849","wikidata":"https://www.wikidata.org/wiki/Q13611879","display_name":"Data point","level":2,"score":0.43279508},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.4072441},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.39424264},{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.31051898},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.29807657},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.24818847},{"id":"https://openalex.org/C13280743","wikidata":"https://www.wikidata.org/wiki/Q131089","display_name":"Geodesy","level":1,"score":0.0},{"id":"https://openalex.org/C205649164","wikidata":"https://www.wikidata.org/wiki/Q1071","display_name":"Geography","level":0,"score":0.0}],"mesh":[],"locations_count":4,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/sam.11144","pdf_url":null,"source":{"id":"https://openalex.org/S40788348","display_name":"Statistical Analysis and Data Mining The ASA Data Science Journal","issn_l":"1932-1864","issn":["1932-1864","1932-1872"],"is_oa":false,"is_in_doaj":false,"is_indexed_in_scopus":true,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":null,"pdf_url":"http://arxiv.org/pdf/1202.0825.pdf","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":true,"landing_page_url":"https://arxiv.org/abs/1202.0825","pdf_url":"https://arxiv.org/pdf/1202.0825","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},{"is_oa":false,"landing_page_url":"http://arxiv.org/abs/1202.0825","pdf_url":null,"source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":{"is_oa":true,"landing_page_url":null,"pdf_url":"http://arxiv.org/pdf/1202.0825.pdf","source":{"id":"https://openalex.org/S4306400194","display_name":"arXiv (Cornell University)","issn_l":null,"issn":null,"is_oa":true,"is_in_doaj":false,"is_indexed_in_scopus":false,"is_core":false,"host_organization":"https://openalex.org/I205783295","host_organization_name":"Cornell University","host_organization_lineage":["https://openalex.org/I205783295"],"host_organization_lineage_names":["Cornell University"],"type":"repository"},"license":null,"license_id":null,"version":"submittedVersion","is_accepted":false,"is_published":false},"sustainable_development_goals":[],"grants":[],"datasets":[],"versions":[],"referenced_works_count":28,"referenced_works":["https://openalex.org/W1593651515","https://openalex.org/W160698270","https://openalex.org/W1853757942","https://openalex.org/W1966626540","https://openalex.org/W1966701961","https://openalex.org/W1967827763","https://openalex.org/W1991311318","https://openalex.org/W1993365145","https://openalex.org/W1995843625","https://openalex.org/W2020214980","https://openalex.org/W2048765414","https://openalex.org/W2048997388","https://openalex.org/W2049365101","https://openalex.org/W2082253757","https://openalex.org/W2098290597","https://openalex.org/W2118250684","https://openalex.org/W2137225583","https://openalex.org/W2142674578","https://openalex.org/W2154057601","https://openalex.org/W2156163858","https://openalex.org/W2166446427","https://openalex.org/W2169709322","https://openalex.org/W2913340405","https://openalex.org/W2990138404","https://openalex.org/W3083554812","https://openalex.org/W4205648292","https://openalex.org/W4212863985","https://openalex.org/W87822204"],"related_works":["https://openalex.org/W972276598","https://openalex.org/W592780493","https://openalex.org/W4321353415","https://openalex.org/W4246352526","https://openalex.org/W2745001401","https://openalex.org/W2505164911","https://openalex.org/W2488605529","https://openalex.org/W2378211422","https://openalex.org/W2364156185","https://openalex.org/W2130974462"],"abstract_inverted_index":{"Many":[0],"modern":[1],"data":[2,45,64,107],"mining":[3,33,197],"applications":[4],"are":[5,16,192],"concerned":[6],"with":[7,47],"the":[8,14,72,106,110,132,143,163,183,187],"analysis":[9],"of":[10,60,126,129,142,147,165,169,179],"datasets":[11],"in":[12,31,153],"which":[13,54,90,135,174],"observations":[15],"described":[17],"by":[18,80],"paired":[19],"high-dimensional":[20,99],"vectorial":[21],"representations":[22],"or":[23],"\u2018views\u2019.":[24],"Some":[25],"typical":[26],"examples":[27],"can":[28,77],"be":[29,78],"found":[30],"web":[32,196],"and":[34,94,206],"genomics":[35],"applications.":[36],"In":[37],"this":[38],"article":[39],"we":[40,161],"present":[41],"an":[42,140],"algorithm":[43,104],"for":[44,98],"clustering":[46,172],"multiple":[48],"views,":[49],"multi-view":[50,171],"predictive":[51,61,112,127,184],"partitioning":[52],"(MVPP),":[53],"relies":[55],"on":[56,123,194],"a":[57,82,124],"novel":[58],"criterion":[59],"similarity":[62],"between":[63,74,114,186],"points.":[65],"We":[66],"assume":[67],"that,":[68],"within":[69],"each":[70],"cluster,":[71],"dependence":[73],"multivariate":[75],"views":[76,115],"modeled":[79],"using":[81],"two-block":[83],"partial":[84],"least":[85,155],"squares":[86,148,156],"(TB-PLS)":[87],"regression":[88],"model,":[89],"performs":[91],"dimensionality":[92],"reduction":[93],"is":[95,116],"particularly":[96],"suitable":[97],"settings.":[100],"The":[101,118],"proposed":[102,119],"MVPP":[103,166],"partitions":[105],"such":[108],"that":[109,168],"within-cluster":[111],"ability":[113],"maximized.":[117],"objective":[120],"function":[121],"depends":[122],"measure":[125],"influence":[128],"points":[130],"under":[131],"TB-PLS":[133],"model":[134],"has":[136],"been":[137],"derived":[138],"as":[139],"extension":[141],"predicted":[144],"residual":[145],"sums":[146],"(PRESS)":[149],"statistic":[150],"commonly":[151],"used":[152],"ordinary":[154],"regression.":[157],"Using":[158],"simulated":[159],"data,":[160],"compare":[162],"performance":[164],"to":[167],"competing":[170],"methods":[173],"rely":[175],"upon":[176],"geometric":[177],"structures":[178],"points,":[180],"but":[181],"ignore":[182],"relationship":[185],"two":[188],"views.":[189],"State-of-art":[190],"results":[191],"obtained":[193],"benchmark":[195],"datasets.":[198],"\u00a9":[199],"2012":[200,209],"Wiley":[201],"Periodicals,":[202],"Inc.":[203],"Statistical":[204],"Analysis":[205],"Data":[207],"Mining,":[208]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W1986826403","counts_by_year":[{"year":2020,"cited_by_count":1},{"year":2016,"cited_by_count":1},{"year":2014,"cited_by_count":3},{"year":2013,"cited_by_count":2}],"updated_date":"2025-01-18T03:08:42.094915","created_date":"2016-06-24"}