{"id":"https://openalex.org/W3080711308","doi":"https://doi.org/10.1002/rob.21983","title":"Efficient obstacle detection based on prior estimation network and spatially constrained mixture model for unmanned surface vehicles","display_name":"Efficient obstacle detection based on prior estimation network and spatially constrained mixture model for unmanned surface vehicles","publication_year":2020,"publication_date":"2020-08-25","ids":{"openalex":"https://openalex.org/W3080711308","doi":"https://doi.org/10.1002/rob.21983","mag":"3080711308"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/rob.21983","pdf_url":null,"source":{"id":"https://openalex.org/S151299380","display_name":"Journal of Field Robotics","issn_l":"1556-4959","issn":["1556-4959","1556-4967"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5100434412","display_name":"Jingyi Liu","orcid":"https://orcid.org/0000-0001-6251-6051"},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"education","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Jingyi Liu","raw_affiliation_strings":["School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Shanghai, China","institution_ids":["https://openalex.org/I113940042"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5100780078","display_name":"Hengyu Li","orcid":"https://orcid.org/0000-0002-2243-5908"},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"education","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Hengyu Li","raw_affiliation_strings":["School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Shanghai, China","institution_ids":["https://openalex.org/I113940042"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5016769551","display_name":"Jun Luo","orcid":"https://orcid.org/0000-0003-1314-5631"},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"education","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":true,"raw_author_name":"Jun Luo","raw_affiliation_strings":["School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Shanghai, China","institution_ids":["https://openalex.org/I113940042"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5086702173","display_name":"Shaorong Xie","orcid":"https://orcid.org/0000-0002-8016-9310"},"institutions":[{"id":"https://openalex.org/I113940042","display_name":"Shanghai University","ror":"https://ror.org/006teas31","country_code":"CN","type":"education","lineage":["https://openalex.org/I113940042"]}],"countries":["CN"],"is_corresponding":false,"raw_author_name":"Shaorong Xie","raw_affiliation_strings":["School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Shanghai, China"],"affiliations":[{"raw_affiliation_string":"School of Mechatronic Engineering and Automation, Shanghai University, 99 Shangda Road, Shanghai, China","institution_ids":["https://openalex.org/I113940042"]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5077878309","display_name":"Yu Sun","orcid":"https://orcid.org/0000-0001-7895-0741"},"institutions":[{"id":"https://openalex.org/I185261750","display_name":"University of Toronto","ror":"https://ror.org/03dbr7087","country_code":"CA","type":"education","lineage":["https://openalex.org/I185261750"]}],"countries":["CA"],"is_corresponding":false,"raw_author_name":"Yu Sun","raw_affiliation_strings":["Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8 Canada"],"affiliations":[{"raw_affiliation_string":"Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario, M5S 3G8 Canada","institution_ids":["https://openalex.org/I185261750"]}]}],"institution_assertions":[],"countries_distinct_count":2,"institutions_distinct_count":2,"corresponding_author_ids":["https://openalex.org/A5100780078","https://openalex.org/A5016769551"],"corresponding_institution_ids":["https://openalex.org/I113940042","https://openalex.org/I113940042"],"apc_list":{"value":4430,"currency":"USD","value_usd":4430,"provenance":"doaj"},"apc_paid":null,"fwci":2.341,"has_fulltext":false,"cited_by_count":21,"citation_normalized_percentile":{"value":0.813407,"is_in_top_1_percent":false,"is_in_top_10_percent":false},"cited_by_percentile_year":{"min":92,"max":93},"biblio":{"volume":"38","issue":"2","first_page":"212","last_page":"228"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T11622","display_name":"Maritime Navigation and Safety","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T11622","display_name":"Maritime Navigation and Safety","score":0.9996,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11192","display_name":"Underwater Vehicles and Communication Systems","score":0.9946,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T11604","display_name":"Ship Hydrodynamics and Maneuverability","score":0.9773,"subfield":{"id":"https://openalex.org/subfields/2212","display_name":"Ocean Engineering"},"field":{"id":"https://openalex.org/fields/22","display_name":"Engineering"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/maximization","display_name":"Maximization","score":0.5314338}],"concepts":[{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.63534045},{"id":"https://openalex.org/C177769412","wikidata":"https://www.wikidata.org/wiki/Q278090","display_name":"Prior probability","level":3,"score":0.62863207},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.6219567},{"id":"https://openalex.org/C2776650193","wikidata":"https://www.wikidata.org/wiki/Q264661","display_name":"Obstacle","level":2,"score":0.6143795},{"id":"https://openalex.org/C79337645","wikidata":"https://www.wikidata.org/wiki/Q779824","display_name":"Outlier","level":2,"score":0.55117035},{"id":"https://openalex.org/C2776330181","wikidata":"https://www.wikidata.org/wiki/Q18358244","display_name":"Maximization","level":2,"score":0.5314338},{"id":"https://openalex.org/C182081679","wikidata":"https://www.wikidata.org/wiki/Q1275153","display_name":"Expectation\u2013maximization algorithm","level":3,"score":0.4725525},{"id":"https://openalex.org/C177264268","wikidata":"https://www.wikidata.org/wiki/Q1514741","display_name":"Set (abstract data type)","level":2,"score":0.43296647},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.41349542},{"id":"https://openalex.org/C61224824","wikidata":"https://www.wikidata.org/wiki/Q2260434","display_name":"Mixture model","level":2,"score":0.41220063},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.36414164},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.2704693},{"id":"https://openalex.org/C126255220","wikidata":"https://www.wikidata.org/wiki/Q141495","display_name":"Mathematical optimization","level":1,"score":0.20840508},{"id":"https://openalex.org/C49781872","wikidata":"https://www.wikidata.org/wiki/Q1045555","display_name":"Maximum likelihood","level":2,"score":0.2005164},{"id":"https://openalex.org/C105795698","wikidata":"https://www.wikidata.org/wiki/Q12483","display_name":"Statistics","level":1,"score":0.14004058},{"id":"https://openalex.org/C107673813","wikidata":"https://www.wikidata.org/wiki/Q812534","display_name":"Bayesian probability","level":2,"score":0.13896298},{"id":"https://openalex.org/C17744445","wikidata":"https://www.wikidata.org/wiki/Q36442","display_name":"Political science","level":0,"score":0.0},{"id":"https://openalex.org/C199539241","wikidata":"https://www.wikidata.org/wiki/Q7748","display_name":"Law","level":1,"score":0.0},{"id":"https://openalex.org/C199360897","wikidata":"https://www.wikidata.org/wiki/Q9143","display_name":"Programming language","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/rob.21983","pdf_url":null,"source":{"id":"https://openalex.org/S151299380","display_name":"Journal of Field Robotics","issn_l":"1556-4959","issn":["1556-4959","1556-4967"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"display_name":"Life below water","id":"https://metadata.un.org/sdg/14","score":0.86}],"grants":[{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61525305"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61827812"},{"funder":"https://openalex.org/F4320321001","funder_display_name":"National Natural Science Foundation of China","award_id":"61933008"}],"datasets":[],"versions":[],"referenced_works_count":37,"referenced_works":["https://openalex.org/W1522301498","https://openalex.org/W1577212875","https://openalex.org/W1677182931","https://openalex.org/W1918087345","https://openalex.org/W1985690171","https://openalex.org/W2013424615","https://openalex.org/W2044328399","https://openalex.org/W2047544089","https://openalex.org/W2057373538","https://openalex.org/W2115296699","https://openalex.org/W2142834259","https://openalex.org/W2144622131","https://openalex.org/W2152842394","https://openalex.org/W2165065922","https://openalex.org/W2194775991","https://openalex.org/W2213101715","https://openalex.org/W2332618872","https://openalex.org/W2345644119","https://openalex.org/W2412782625","https://openalex.org/W2468368736","https://openalex.org/W2505004417","https://openalex.org/W2511125977","https://openalex.org/W2552331162","https://openalex.org/W2555618208","https://openalex.org/W2626779203","https://openalex.org/W2760119996","https://openalex.org/W2766301133","https://openalex.org/W2787889241","https://openalex.org/W2804761573","https://openalex.org/W2809446072","https://openalex.org/W2910194729","https://openalex.org/W2921781974","https://openalex.org/W2952837724","https://openalex.org/W2955058313","https://openalex.org/W2963661907","https://openalex.org/W4213262319","https://openalex.org/W4247950230"],"related_works":["https://openalex.org/W84255947","https://openalex.org/W4312864369","https://openalex.org/W2955958993","https://openalex.org/W2473373438","https://openalex.org/W2368486525","https://openalex.org/W2330365033","https://openalex.org/W2153481672","https://openalex.org/W2153238387","https://openalex.org/W2077224612","https://openalex.org/W2014842417"],"abstract_inverted_index":{"Abstract":[0],"Recently,":[1],"spatially":[2,77],"constrained":[3,78],"mixture":[4,79,105,171,185,206],"model":[5,45,80,172],"has":[6,24],"become":[7],"the":[8,12,30,34,38,61,87,104,124,128,144,151,158,162,166,170,176,180,184,190,197,201,205,224,244],"mainstream":[9],"method":[10,228],"for":[11,114,126],"task":[13],"of":[14,28,33,43,63,89,131,146,153,169,189,200],"vision\u2010based":[15],"obstacle":[16,112,140,246],"detection":[17,113,247],"in":[18,60,68,86,139,183,204,232,240,255,263],"unmanned":[19],"surface":[20],"vehicles":[21],"(USVs),":[22],"and":[23,52,66,134,173,236,259],"shown":[25],"its":[26],"potential":[27],"modeling":[29],"semantic":[31,129,181],"structure":[32,130],"marine":[35,132,245],"environment.":[36],"However,":[37],"expectation":[39],"maximization":[40],"(EM)":[41],"optimization":[42],"this":[44,93],"is":[46,100,192],"quite":[47],"sensitive":[48],"to":[49,83,102,122,164,195,209],"initial":[50,136,148,167],"values":[51,199],"easily":[53],"falls":[54],"into":[55],"a":[56,95,118,237,260],"local":[57],"optimal":[58],"solution":[59],"presence":[62,88],"significant":[64],"rolling":[65],"pitching":[67],"rough":[69],"seas.":[70],"In":[71,92],"addition,":[72],"existing":[73],"methods":[74],"based":[75],"on":[76,150,179,243,266],"are":[81],"susceptible":[82],"false":[84,211],"positives":[85,212],"sun":[90,215],"glitter.":[91,216],"paper,":[94],"prior":[96],"estimation":[97,235,258],"network":[98],"(PEN)":[99],"proposed":[101],"improve":[103],"model,":[106,207],"which":[107],"together":[108],"enable":[109],"reliable":[110],"monocular":[111,227],"USVs.":[115],"We":[116],"develop":[117],"weakly":[119],"supervised":[120],"E\u2010step":[121],"train":[123],"PEN":[125,163,191],"learning":[127],"images":[133],"estimating":[135],"class":[137],"priors":[138,159,178],"detection.":[141],"To":[142],"mitigate":[143],"influence":[145],"poor":[147],"parameters":[149,168],"convergence":[152],"EM":[154],"optimization,":[155],"we":[156],"use":[157],"estimated":[160],"by":[161,214,229],"calculate":[165],"automatically":[174],"adjust":[175],"hyper":[177],"components":[182],"model.":[186],"The":[187],"output":[188],"also":[193],"applied":[194],"set":[196],"probability":[198],"outlier":[202],"component":[203],"aiming":[208],"reduce":[210],"caused":[213],"Experimental":[217],"results":[218],"show":[219],"that":[220],"our":[221,267],"approach":[222],"outperforms":[223],"current":[225],"state\u2010of\u2010the\u2010art":[226],"15%":[230],"improvement":[231,254],"sea":[233,256],"edge":[234,257],"3.3%":[238],"increase":[239,262],"F":[241,264],"\u2010score":[242,265],"data":[248,268],"set,":[249,269],"as":[250,252],"well":[251],"69.5%":[253],"39.2%":[261],"while":[270],"running":[271],"over":[272],"40":[273],"fps.":[274]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W3080711308","counts_by_year":[{"year":2024,"cited_by_count":6},{"year":2023,"cited_by_count":5},{"year":2022,"cited_by_count":6},{"year":2021,"cited_by_count":4}],"updated_date":"2025-01-12T12:36:16.790025","created_date":"2020-09-01"}