{"id":"https://openalex.org/W2001029196","doi":"https://doi.org/10.1002/(sici)1097-007x(199901/02)27:1<171::aid-cta47>3.0.co;2-x","title":"CNN-based spatio-temporal nonlinear filtering and endocardial boundary detection in echocardiography","display_name":"CNN-based spatio-temporal nonlinear filtering and endocardial boundary detection in echocardiography","publication_year":1999,"publication_date":"1999-01-01","ids":{"openalex":"https://openalex.org/W2001029196","doi":"https://doi.org/10.1002/(sici)1097-007x(199901/02)27:1<171::aid-cta47>3.0.co;2-x","mag":"2001029196"},"language":"en","primary_location":{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/(sici)1097-007x(199901/02)27:1<171::aid-cta47>3.0.co;2-x","pdf_url":null,"source":{"id":"https://openalex.org/S92132303","display_name":"International Journal of Circuit Theory and Applications","issn_l":"0098-9886","issn":["0098-9886","1097-007X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false},"type":"article","type_crossref":"journal-article","indexed_in":["crossref"],"open_access":{"is_oa":false,"oa_status":"closed","oa_url":null,"any_repository_has_fulltext":false},"authorships":[{"author_position":"first","author":{"id":"https://openalex.org/A5110248739","display_name":"Csaba Rekeczky","orcid":null},"institutions":[{"id":"https://openalex.org/I7597260","display_name":"Hungarian Academy of Sciences","ror":"https://ror.org/02ks8qq67","country_code":"HU","type":"government","lineage":["https://openalex.org/I7597260"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Csaba Rekeczky","raw_affiliation_strings":["Analogical and Neural Computing Laboratory, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, Hungary"],"affiliations":[{"raw_affiliation_string":"Analogical and Neural Computing Laboratory, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, Hungary","institution_ids":["https://openalex.org/I7597260"]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5076947554","display_name":"\u00c1d\u00e1m Tahy","orcid":null},"institutions":[],"countries":["HU"],"is_corresponding":false,"raw_author_name":"\u00c1d\u00e1m Tahy","raw_affiliation_strings":["National Hospital of Cardiology, Balatonf\u00fcred, Hungary"],"affiliations":[{"raw_affiliation_string":"National Hospital of Cardiology, Balatonf\u00fcred, Hungary","institution_ids":[]}]},{"author_position":"middle","author":{"id":"https://openalex.org/A5044774080","display_name":"Zolt\u00e1n V\u00e9gh","orcid":null},"institutions":[],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Zolt\u00e1n V\u00e9gh","raw_affiliation_strings":["National Hospital of Cardiology, Balatonf\u00fcred, Hungary"],"affiliations":[{"raw_affiliation_string":"National Hospital of Cardiology, Balatonf\u00fcred, Hungary","institution_ids":[]}]},{"author_position":"last","author":{"id":"https://openalex.org/A5110250070","display_name":"Tam\u00e1s Roska","orcid":null},"institutions":[{"id":"https://openalex.org/I7597260","display_name":"Hungarian Academy of Sciences","ror":"https://ror.org/02ks8qq67","country_code":"HU","type":"government","lineage":["https://openalex.org/I7597260"]}],"countries":["HU"],"is_corresponding":false,"raw_author_name":"Tam\u00e1s Roska","raw_affiliation_strings":["Analogical and Neural Computing Laboratory, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, Hungary"],"affiliations":[{"raw_affiliation_string":"Analogical and Neural Computing Laboratory, Computer and Automation Institute, Hungarian Academy of Sciences, Budapest, Hungary","institution_ids":["https://openalex.org/I7597260"]}]}],"institution_assertions":[],"countries_distinct_count":1,"institutions_distinct_count":1,"corresponding_author_ids":[],"corresponding_institution_ids":[],"apc_list":{"value":3660,"currency":"USD","value_usd":3660,"provenance":"doaj"},"apc_paid":null,"fwci":5.597,"has_fulltext":false,"cited_by_count":75,"citation_normalized_percentile":{"value":0.958319,"is_in_top_1_percent":false,"is_in_top_10_percent":true},"cited_by_percentile_year":{"min":94,"max":95},"biblio":{"volume":"27","issue":"1","first_page":"171","last_page":"207"},"is_retracted":false,"is_paratext":false,"primary_topic":{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},"topics":[{"id":"https://openalex.org/T10688","display_name":"Image and Signal Denoising Methods","score":0.9977,"subfield":{"id":"https://openalex.org/subfields/1707","display_name":"Computer Vision and Pattern Recognition"},"field":{"id":"https://openalex.org/fields/17","display_name":"Computer Science"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}},{"id":"https://openalex.org/T10378","display_name":"Advanced MRI Techniques and Applications","score":0.9915,"subfield":{"id":"https://openalex.org/subfields/2741","display_name":"Radiology, Nuclear Medicine and Imaging"},"field":{"id":"https://openalex.org/fields/27","display_name":"Medicine"},"domain":{"id":"https://openalex.org/domains/4","display_name":"Health Sciences"}},{"id":"https://openalex.org/T11206","display_name":"Model Reduction and Neural Networks","score":0.9824,"subfield":{"id":"https://openalex.org/subfields/3109","display_name":"Statistical and Nonlinear Physics"},"field":{"id":"https://openalex.org/fields/31","display_name":"Physics and Astronomy"},"domain":{"id":"https://openalex.org/domains/3","display_name":"Physical Sciences"}}],"keywords":[{"id":"https://openalex.org/keywords/kernel","display_name":"Kernel (algebra)","score":0.4489363}],"concepts":[{"id":"https://openalex.org/C11413529","wikidata":"https://www.wikidata.org/wiki/Q8366","display_name":"Algorithm","level":1,"score":0.546222},{"id":"https://openalex.org/C62354387","wikidata":"https://www.wikidata.org/wiki/Q875399","display_name":"Boundary (topology)","level":2,"score":0.47206476},{"id":"https://openalex.org/C41008148","wikidata":"https://www.wikidata.org/wiki/Q21198","display_name":"Computer science","level":0,"score":0.46506363},{"id":"https://openalex.org/C89600930","wikidata":"https://www.wikidata.org/wiki/Q1423946","display_name":"Segmentation","level":2,"score":0.46139264},{"id":"https://openalex.org/C197424946","wikidata":"https://www.wikidata.org/wiki/Q1165717","display_name":"Waveform","level":3,"score":0.45895347},{"id":"https://openalex.org/C74193536","wikidata":"https://www.wikidata.org/wiki/Q574844","display_name":"Kernel (algebra)","level":2,"score":0.4489363},{"id":"https://openalex.org/C106131492","wikidata":"https://www.wikidata.org/wiki/Q3072260","display_name":"Filter (signal processing)","level":2,"score":0.43383786},{"id":"https://openalex.org/C154945302","wikidata":"https://www.wikidata.org/wiki/Q11660","display_name":"Artificial intelligence","level":1,"score":0.38101488},{"id":"https://openalex.org/C33923547","wikidata":"https://www.wikidata.org/wiki/Q395","display_name":"Mathematics","level":0,"score":0.380696},{"id":"https://openalex.org/C153180895","wikidata":"https://www.wikidata.org/wiki/Q7148389","display_name":"Pattern recognition (psychology)","level":2,"score":0.35336894},{"id":"https://openalex.org/C31972630","wikidata":"https://www.wikidata.org/wiki/Q844240","display_name":"Computer vision","level":1,"score":0.31106544},{"id":"https://openalex.org/C134306372","wikidata":"https://www.wikidata.org/wiki/Q7754","display_name":"Mathematical analysis","level":1,"score":0.09799594},{"id":"https://openalex.org/C76155785","wikidata":"https://www.wikidata.org/wiki/Q418","display_name":"Telecommunications","level":1,"score":0.0},{"id":"https://openalex.org/C554190296","wikidata":"https://www.wikidata.org/wiki/Q47528","display_name":"Radar","level":2,"score":0.0},{"id":"https://openalex.org/C114614502","wikidata":"https://www.wikidata.org/wiki/Q76592","display_name":"Combinatorics","level":1,"score":0.0}],"mesh":[],"locations_count":1,"locations":[{"is_oa":false,"landing_page_url":"https://doi.org/10.1002/(sici)1097-007x(199901/02)27:1<171::aid-cta47>3.0.co;2-x","pdf_url":null,"source":{"id":"https://openalex.org/S92132303","display_name":"International Journal of Circuit Theory and Applications","issn_l":"0098-9886","issn":["0098-9886","1097-007X"],"is_oa":false,"is_in_doaj":false,"is_core":true,"host_organization":"https://openalex.org/P4310320595","host_organization_name":"Wiley","host_organization_lineage":["https://openalex.org/P4310320595"],"host_organization_lineage_names":["Wiley"],"type":"journal"},"license":null,"license_id":null,"version":null,"is_accepted":false,"is_published":false}],"best_oa_location":null,"sustainable_development_goals":[{"id":"https://metadata.un.org/sdg/16","display_name":"Peace, justice, and strong institutions","score":0.43}],"grants":[],"datasets":[],"versions":[],"referenced_works_count":86,"referenced_works":["https://openalex.org/W1489779630","https://openalex.org/W1495525821","https://openalex.org/W1578671836","https://openalex.org/W159400821","https://openalex.org/W1606202192","https://openalex.org/W1809705255","https://openalex.org/W1848072674","https://openalex.org/W1952970930","https://openalex.org/W1968071966","https://openalex.org/W1969544220","https://openalex.org/W1974677846","https://openalex.org/W1976708251","https://openalex.org/W1990642738","https://openalex.org/W1991738904","https://openalex.org/W1993250007","https://openalex.org/W1998618546","https://openalex.org/W2002639195","https://openalex.org/W2003370853","https://openalex.org/W2007120634","https://openalex.org/W2016020597","https://openalex.org/W2022735534","https://openalex.org/W2027186012","https://openalex.org/W2032457407","https://openalex.org/W2043986201","https://openalex.org/W2046444944","https://openalex.org/W2049909233","https://openalex.org/W2051385641","https://openalex.org/W2056717940","https://openalex.org/W2072596323","https://openalex.org/W2072843185","https://openalex.org/W2075661643","https://openalex.org/W2080552182","https://openalex.org/W2096487156","https://openalex.org/W2097222278","https://openalex.org/W2105911346","https://openalex.org/W2109863423","https://openalex.org/W2110975683","https://openalex.org/W2112580005","https://openalex.org/W2118005470","https://openalex.org/W2120959665","https://openalex.org/W2124214878","https://openalex.org/W2126134609","https://openalex.org/W2130257032","https://openalex.org/W2130257154","https://openalex.org/W2130416988","https://openalex.org/W2130622335","https://openalex.org/W2131693273","https://openalex.org/W2132334923","https://openalex.org/W2132447169","https://openalex.org/W2132513117","https://openalex.org/W2132886372","https://openalex.org/W2133363710","https://openalex.org/W2133813979","https://openalex.org/W2137676365","https://openalex.org/W2141399147","https://openalex.org/W2144330155","https://openalex.org/W2145023731","https://openalex.org/W2146052399","https://openalex.org/W2148750984","https://openalex.org/W2149926425","https://openalex.org/W2150134853","https://openalex.org/W2150530698","https://openalex.org/W2151162785","https://openalex.org/W2152794868","https://openalex.org/W2153300784","https://openalex.org/W2156996644","https://openalex.org/W2160121923","https://openalex.org/W2160740160","https://openalex.org/W2164965552","https://openalex.org/W2165252576","https://openalex.org/W2166695682","https://openalex.org/W2167909423","https://openalex.org/W2171857449","https://openalex.org/W2418575702","https://openalex.org/W2476868371","https://openalex.org/W2600724652","https://openalex.org/W2730701365","https://openalex.org/W2736255137","https://openalex.org/W3011612142","https://openalex.org/W3149744452","https://openalex.org/W4210669767","https://openalex.org/W4252971721","https://openalex.org/W4252977769","https://openalex.org/W4253363017","https://openalex.org/W4285719527","https://openalex.org/W43818580"],"related_works":["https://openalex.org/W4367555392","https://openalex.org/W3040712279","https://openalex.org/W2883092465","https://openalex.org/W2538520412","https://openalex.org/W2374664672","https://openalex.org/W2364769705","https://openalex.org/W2176409448","https://openalex.org/W2129841057","https://openalex.org/W2056136368","https://openalex.org/W1974895211"],"abstract_inverted_index":{"In":[0,57],"this":[1],"paper,":[2],"a":[3,20,46,50,136,161,239,251],"CNN-based":[4],"spatio-temporal":[5,252],"approach":[6,237],"is":[7,63,76,128,133,168,179,186,205,220],"introduced":[8],"for":[9,222],"finding":[10],"the":[11,16,42,53,58,67,73,85,88,96,114,119,125,131,153,157,160,165,171,189,192,198,211,216,223,234,245],"endocardial":[12,241],"(inner)":[13],"boundary":[14,132,242],"of":[15,22,45,87,95,118,124,156,191,210,226,244],"left":[17,126,246],"ventricle":[18,127,247],"from":[19,102],"sequence":[21],"echocardiographic":[23],"images.":[24,74],"The":[25,122],"discussed":[26,235],"analogic":[27],"CNN":[28,158,201,227,253],"algorithm":[29,193],"combines":[30],"optimal":[31,80],"non-linear":[32,61],"filtering":[33,62,81],"and":[34,105,130,147],"constrained":[35,141],"wave":[36,142],"propagation":[37],"in":[38,49,248],"order":[39],"to":[40,65,181,215],"estimate":[41,84,117],"continuous":[43],"contour":[44],"moving":[47],"object":[48],"medium":[51],"where":[52],"edges":[54],"are":[55,150],"ill-defined.":[56],"preprocessing":[59],"phase,":[60],"employed":[64],"remove":[66],"coherent":[68],"speckle":[69],"noise":[70],"that":[71,78,108,139,188,207,219,233],"corrupts":[72],"It":[75,185],"verified":[77],"an":[79,110],"strategy":[82],"should":[83],"mode":[86,97],"local":[89],"intensity":[90],"histogram.":[91],"Three":[92],"different":[93],"approximations":[94],"filter":[98],"were":[99],"implemented,":[100],"derived":[101],"robust":[103],"statistics":[104],"geometry-driven":[106],"diffusion,":[107],"give":[109],"output":[111],"consistent":[112],"with":[113],"maximum":[115],"likelihood":[116],"noisy":[120],"sequence.":[121],"kernel":[123],"located":[129],"found":[134],"using":[135,197,250],"fuzzy-adaptive":[137],"technique":[138],"embodies":[140],"propagation.":[143],"Boundary":[144],"dislocation,":[145],"area":[146],"smoothness":[148],"constraints":[149],"transformed":[151],"into":[152,170],"transient":[154],"length":[155],"while":[159],"priori":[162],"knowledge":[163],"about":[164],"heart":[166],"morphology":[167],"built":[169],"spatial":[172],"template":[173],"parameters":[174],"(weight":[175],"values).":[176],"Special":[177],"emphasis":[178],"given":[180],"VLSI":[182],"implementation":[183,217],"complexity.":[184],"shown":[187],"core":[190],"can":[194],"be":[195],"realized":[196],"already":[199],"available":[200],"chips.":[202],"Furthermore,":[203],"it":[204],"argued":[206],"all":[208],"templates":[209],"complete":[212],"solution":[213],"belong":[214],"frame":[218],"considered":[221],"next":[224],"generation":[225],"Universal":[228],"Chips.":[229],"This":[230],"study":[231],"demonstrates":[232],"novel":[236],"allows":[238],"reliable":[240],"tracking":[243],"real-time":[249],"visual":[254],"microprocessor.":[255],"Copyright":[256],"\u00a9":[257],"1999":[258],"John":[259],"Wiley":[260],"&":[261],"Sons,":[262],"Ltd.":[263]},"cited_by_api_url":"https://api.openalex.org/works?filter=cites:W2001029196","counts_by_year":[{"year":2024,"cited_by_count":1},{"year":2023,"cited_by_count":3},{"year":2020,"cited_by_count":4},{"year":2019,"cited_by_count":1},{"year":2018,"cited_by_count":2},{"year":2017,"cited_by_count":1},{"year":2015,"cited_by_count":1},{"year":2014,"cited_by_count":6},{"year":2013,"cited_by_count":2},{"year":2012,"cited_by_count":2}],"updated_date":"2024-12-10T07:58:21.541329","created_date":"2016-06-24"}