{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,21]],"date-time":"2024-09-21T17:10:05Z","timestamp":1726938605498},"reference-count":34,"publisher":"European Alliance for Innovation n.o.","issue":"5","license":[{"start":{"date-parts":[[2023,2,16]],"date-time":"2023-02-16T00:00:00Z","timestamp":1676505600000},"content-version":"unspecified","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/3.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["EAI Endorsed Trans Energy Web"],"abstract":"An electric vehicle (EV) battery charging station (EV-BCS) based on a bipolar dc power grid is presented in this paper, which is capable of delivering power to the grid (vehicle-to-grid \u2013 V2G mode), and directly exchange power between different EVs connected to the EV-BCS (vehicle-to-vehicle \u2013 V2V mode), besides the traditional battery charging operation (grid-to-vehicle \u2013 G2V mode). The presented EV-BCS is based on three-level bidirectional buck-boost dc-dc converters and has a modular structure. Simulation results are presented with the aim of validating the aforementioned operation modes, being considered two EVs for simplicity reasons, since it is enough to validate the proposed operation modes. The presented results comprise both balanced and unbalanced operation in terms of power from the EVs viewpoint, with the purpose of considering a real scenario of operation, where a balanced consumption or power injection from the bipolar dc power grid side is always guaranteed.\u00a0<\/jats:p>","DOI":"10.4108\/ew.v9i5.3049","type":"journal-article","created":{"date-parts":[[2023,2,16]],"date-time":"2023-02-16T10:30:42Z","timestamp":1676543442000},"page":"e5","source":"Crossref","is-referenced-by-count":3,"title":["Electric Vehicle Battery Charging Station based on Bipolar dc Power Grid with Grid-to-Vehicle, Vehicle-to-Grid and Vehicle-to-Vehicle Capabilities"],"prefix":"10.4108","volume":"9","author":[{"given":"Tiago J. C.","family":"Sousa","sequence":"first","affiliation":[]},{"given":"V\u00edtor","family":"Monteiro","sequence":"additional","affiliation":[]},{"given":"S\u00e9rgio","family":"Coelho","sequence":"additional","affiliation":[]},{"given":"Lu\u00eds","family":"Machado","sequence":"additional","affiliation":[]},{"given":"Delfim","family":"Pedrosa","sequence":"additional","affiliation":[]},{"given":"Jo\u00e3o L.","family":"Afonso","sequence":"additional","affiliation":[]}],"member":"2587","published-online":{"date-parts":[[2023,2,16]]},"reference":[{"key":"17337","doi-asserted-by":"crossref","unstructured":"C. C. Chan and Y. S. Wong, \u201cElectric vehicles charge forward,\u201d IEEE Power and Energy Magazine, vol. 2, no. 6, pp. 24\u201333, Nov. 2004.","DOI":"10.1109\/MPAE.2004.1359010"},{"key":"17338","doi-asserted-by":"crossref","unstructured":"J. Milberg and A. Schlenker, \u201cPlug into the Future,\u201d IEEE Power and Energy Magazine, vol. 9, no. 1, pp. 56\u201365, Jan. 2011.","DOI":"10.1109\/MPE.2010.939162"},{"key":"17339","doi-asserted-by":"crossref","unstructured":"J. Ansari, A. Gholami, A. Kazemi, and M. Jamei, \u201cEnvironmental\/economic dispatch incorporating renewable energy sources and plug-in vehicles,\u201d IET Generation, Transmission & Distribution, vol. 8, no. 12, pp. 2183\u20132198, Dec. 2014.","DOI":"10.1049\/iet-gtd.2014.0235"},{"key":"17340","doi-asserted-by":"crossref","unstructured":"K. Knezovic, S. Martinenas, P. B. Andersen, A. Zecchino, and M. Marinelli, \u201cEnhancing the Role of Electric Vehicles in the Power Grid: Field Validation of Multiple Ancillary Services,\u201d IEEE Transactions on Transportation Electrification, vol. 3, no. 1, pp. 201\u2013209, 2017.","DOI":"10.1109\/TTE.2016.2616864"},{"key":"17341","doi-asserted-by":"crossref","unstructured":"H. N. T. Nguyen, C. Zhang, and J. Zhang, \u201cDynamic Demand Control of Electric Vehicles to Support Power Grid With High Penetration Level of Renewable Energy,\u201d IEEE Transactions on Transportation Electrification, vol. 2, no. 1, pp. 66\u201375, Mar. 2016.","DOI":"10.1109\/TTE.2016.2519821"},{"key":"17342","doi-asserted-by":"crossref","unstructured":"W. Kempton and J. Tomi\u0107, \u201cVehicle-to-grid power implementation: From stabilizing the grid to supporting large-scale renewable energy,\u201d Journal of Power Sources, vol. 144, no. 1, pp. 280\u2013294, 2005.","DOI":"10.1016\/j.jpowsour.2004.12.022"},{"key":"17343","doi-asserted-by":"crossref","unstructured":"M. Kesler, M. C. Kisacikoglu, and L. M. Tolbert, \u201cVehicle-to-Grid Reactive Power Operation Using Plug-In Electric Vehicle Bidirectional Offboard Charger,\u201d IEEE Transactions on Industrial Electronics, vol. 61, no. 12, pp. 6778\u20136784, Dec. 2014.","DOI":"10.1109\/TIE.2014.2314065"},{"key":"17344","doi-asserted-by":"crossref","unstructured":"V. Monteiro, J. G. Pinto, and J. L. Afonso, \u201cOperation Modes for the Electric Vehicle in Smart Grids and Smart Homes: Present and Proposed Modes,\u201d IEEE Transactions on Vehicular Technology, vol. 65, no. 3, pp. 1007\u20131020, Mar. 2016.","DOI":"10.1109\/TVT.2015.2481005"},{"key":"17345","doi-asserted-by":"crossref","unstructured":"Z. Moghaddam, I. Ahmad, D. Habibi, and Q. V. Phung, \u201cSmart Charging Strategy for Electric Vehicle Charging Stations,\u201d IEEE Transactions on Transportation Electrification, vol. 4, no. 1, pp.76\u201388, Mar. 2018.","DOI":"10.1109\/TTE.2017.2753403"},{"key":"17346","doi-asserted-by":"crossref","unstructured":"T. Morstyn, C. Crozier, M. Deakin, and M. D. McCulloch, \u201cConic Optimization for Electric Vehicle Station Smart Charging With Battery Voltage Constraints,\u201d IEEE Transactions on Transportation Electrification, vol. 6, no. 2, pp.478\u2013487, Jun. 2020.","DOI":"10.1109\/TTE.2020.2986675"},{"key":"17347","doi-asserted-by":"crossref","unstructured":"Q. Dai, T. Cai, S. Duan, and F. Zhao, \u201cStochastic modeling and forecasting of load demand for electric bus battery-swap station,\u201d IEEE Transactions on Power Delivery, vol. 29, no. 4, pp.1909\u20131917, 2014.","DOI":"10.1109\/TPWRD.2014.2308990"},{"key":"17348","doi-asserted-by":"crossref","unstructured":"X. Tan, G. Qu, B. Sun, N. Li, and D. H. K. Tsang, \u201cOptimal Scheduling of EV-BCS Serving Electric Vehicles Based on Battery Swapping,\u201d IEEE Transactions on Smart Grid, vol. 10, no. 2, pp.1372\u20131384, Mar. 2019.","DOI":"10.1109\/TSG.2017.2764484"},{"key":"17349","doi-asserted-by":"crossref","unstructured":"X. Liu, T. Zhao, S. Yao, C. B. Soh, and P. Wang, \u201cDistributed Operation Management of Battery Swapping-Charging Systems,\u201d IEEE Transactions on Smart Grid, vol. 10, no. 5, pp.5320\u20135333, Sep. 2019.","DOI":"10.1109\/TSG.2018.2880449"},{"key":"17350","doi-asserted-by":"crossref","unstructured":"F. Ahmad, M. Saad Alam, I. Saad Alsaidan, and S. M. Shariff, \u201cBattery swapping station for electric vehicles: opportunities and challenges,\u201d IET Smart Grid, vol. 3, no. 3, pp.280\u2013286, Jun. 2020.","DOI":"10.1049\/iet-stg.2019.0059"},{"key":"17351","doi-asserted-by":"crossref","unstructured":"M. Vasiladiotis and A. Rufer, \u201cA Modular Multiport Power Electronic Transformer With Integrated Split Battery Energy Storage for Versatile Ultrafast EV Charging Stations,\u201d IEEE Transactions on Industrial Electronics, vol. 62, no. 5, pp.3213\u20133222, May 2015.","DOI":"10.1109\/TIE.2014.2367237"},{"key":"17352","doi-asserted-by":"crossref","unstructured":"Q. Yan, B. Zhang, and M. Kezunovic, \u201cOptimized Operational Cost Reduction for an EV Charging Station Integrated With Battery Energy Storage and PV Generation,\u201d IEEE Transactions on Smart Grid, vol. 10, no. 2, pp.2096\u20132106, Mar. 2019.","DOI":"10.1109\/TSG.2017.2788440"},{"key":"17353","doi-asserted-by":"crossref","unstructured":"Y. Deng, Y. Zhang, and F. Luo, \u201cOperational Planning of Centralized Charging Stations Using Second-Life Battery Energy Storage Systems,\u201d IEEE Transactions on Sustainable Energy, vol. 3029, no. c, pp.1\u20131, 2020.","DOI":"10.1109\/TSTE.2020.3001015"},{"key":"17354","doi-asserted-by":"crossref","unstructured":"B. T. Patterson, \u201cDC, Come Home: DC Microgrids and the Birth of the \u2018Enernet,\u2019\u201d IEEE Power and Energy Magazine, vol. 10, no. 6, pp.60\u201369, 2012.","DOI":"10.1109\/MPE.2012.2212610"},{"key":"17355","doi-asserted-by":"crossref","unstructured":"D. Kumar, F. Zare, and A. Ghosh, \u201cDC Microgrid Technology: System Architectures, AC Grid Interfaces, Grounding Schemes, Power Quality, Communication Networks, Applications, and Standardizations Aspects,\u201d IEEE Access, vol. 5, pp.12230\u201312256, 2017.","DOI":"10.1109\/ACCESS.2017.2705914"},{"key":"17356","doi-asserted-by":"crossref","unstructured":"L. Sun, F. Zhuo, F. Wang, and T. Zhu, \u201cA Nonisolated Bidirectional Soft-Switching Power-Unit-Based DC\u2013DC Converter With Unipolar and Bipolar Structure for DC Networks Interconnection,\u201d IEEE Transactions on Industry Applications, vol. 54, no. 3, pp.2677\u20132689, May 2018.","DOI":"10.1109\/TIA.2018.2797256"},{"key":"17357","doi-asserted-by":"crossref","unstructured":"L. Guo, G. Yao, C. Huang, and L. Zhou, \u201cBipolar output direct-coupled DC\u2013DC converter applied to DC grids,\u201d The Journal of Engineering, vol. 2019, no. 16, pp.1474\u20131479, Mar. 2019.","DOI":"10.1049\/joe.2018.8808"},{"key":"17358","unstructured":"C. Perera, J. Salmon, and G. J. Kish, \u201cMultiport Converter with Independent Control of AC and DC Power Flows for Bipolar DC Distribution,\u201d IEEE Transactions on Power Electronics, vol. 8993, no. c, pp.1\u20131, 2020."},{"key":"17359","doi-asserted-by":"crossref","unstructured":"S. Rivera, B. Wu, S. Kouro, V. Yaramasu, and J. Wang, \u201cElectric Vehicle Charging Station Using a Neutral Point Clamped Converter With Bipolar DC Bus,\u201d IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp.1999\u20132009, Apr. 2015.","DOI":"10.1109\/TIE.2014.2348937"},{"key":"17360","doi-asserted-by":"crossref","unstructured":"L. Tan, B. Wu, V. Yaramasu, S. Rivera, and X. Guo, \u201cEffective Voltage Balance Control for Bipolar-DC-Bus-Fed EV Charging Station With Three-Level DC\u2013DC Fast Charger,\u201d IEEE Transactions on Industrial Electronics, vol. 63, no. 7, pp.4031\u20134041, Jul. 2016.","DOI":"10.1109\/TIE.2016.2539248"},{"key":"17361","doi-asserted-by":"crossref","unstructured":"L. Tan, B. Wu, S. Rivera, and V. Yaramasu, \u201cComprehensive DC Power Balance Management in High-Power Three-Level DC\u2013DC Converter for Electric Vehicle Fast Charging,\u201d IEEE Transactions on Power Electronics, vol. 31, no. 1, pp.89\u2013100, Jan. 2016.","DOI":"10.1109\/TPEL.2015.2397453"},{"key":"17362","doi-asserted-by":"crossref","unstructured":"S. Rivera and B. Wu, \u00e2\u20ac\u015bElectric Vehicle Charging Station With an Energy Storage Stage for Split-DC Bus Voltage Balancing,\u00e2\u20ac\u0165 IEEE Transactions on Power Electronics, vol. 32, no. 3, pp.2376\u00e2\u20ac\u201c2386, Mar. 2017.","DOI":"10.1109\/TPEL.2016.2568039"},{"key":"17363","unstructured":"S. Kim, H. Cha, and H.-G. Kim, \u00e2\u20ac\u015bHigh-Efficiency Voltage Balancer Having DC\u00e2\u20ac\u201cDC Converter Function for EV Charging Station,\u00e2\u20ac\u0165 IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 6777, no. c, pp.1\u00e2\u20ac\u201c1, 2019."},{"key":"17364","doi-asserted-by":"crossref","unstructured":"T. J. C. Sousa, V. Monteiro, J. C. A. Fernandes, C. Couto, A. A. N. Melendez, and J. L. Afonso, \u00e2\u20ac\u015bNew Perspectives for Vehicle-to-Vehicle (V2V) Power Transfer,\u00e2\u20ac\u0165 in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 2018, pp. 5183\u00e2\u20ac\u201c5188.","DOI":"10.1109\/IECON.2018.8591209"},{"key":"17365","doi-asserted-by":"crossref","unstructured":"S. Taghizadeh, P. Jamborsalamati, M. J. Hossain, and J. Lu, \u00e2\u20ac\u015bDesign and Implementation of an Advanced Vehicle-to-Vehicle (V2V) Power Transfer Operation Using Communications,\u00e2\u20ac\u0165 in 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC \/ I&CPS Europe), 2018, pp. 1\u00e2\u20ac\u201c6.","DOI":"10.1109\/EEEIC.2018.8494480"},{"key":"17366","doi-asserted-by":"crossref","unstructured":"X. Mou, R. Zhao, and D. T. Gladwin, \u00e2\u20ac\u015bVehicle to vehicle charging (V2V) bases on wireless power transfer technology,\u00e2\u20ac\u0165 in IECON 2018 - 44th Annual Conference of the IEEE Industrial Electronics Society, 2018, pp. 4862\u00e2\u20ac\u201c4867.","DOI":"10.1109\/IECON.2018.8592888"},{"key":"17367","doi-asserted-by":"crossref","unstructured":"X. Mou, \u00e2\u20ac\u015bVehicle-to-Vehicle charging system fundamental and design comparison,\u00e2\u20ac\u0165 in 2019 IEEE International Conference on Industrial Technology (ICIT), 2019, pp. 1628\u00e2\u20ac\u201c1633.","DOI":"10.1109\/ICIT.2019.8755057"},{"key":"17368","doi-asserted-by":"crossref","unstructured":"M. Shen, F. Z. Peng, and L. M. Tolbert, \u00e2\u20ac\u015bMultilevel DC\u00e2\u20ac\u201cDC Power Conversion System With Multiple DC Sources,\u00e2\u20ac\u0165 IEEE Transactions on Power Electronics, vol. 23, no. 1, pp.420\u00e2\u20ac\u201c426, Jan. 2008.","DOI":"10.1109\/TPEL.2007.911875"},{"key":"17369","doi-asserted-by":"crossref","unstructured":"M. Yilmaz and P. T. Krein, \u00e2\u20ac\u015bReview of Battery Charger Topologies, Charging Power Levels, and Infrastructure for Plug-In Electric and Hybrid Vehicles,\u00e2\u20ac\u0165 IEEE Transactions on Power Electronics, vol. 28, no. 5, pp. 2151\u00e2\u20ac\u201c2169, May 2013.","DOI":"10.1109\/TPEL.2012.2212917"},{"key":"17370","doi-asserted-by":"crossref","unstructured":"V. Monteiro, T. J. C. Sousa, M. J. Sep\u0102\u015flveda, C. Couto, A. Lima, J. L. Afonso, \"A Proposed Bidirectional Three Level dc- dc Power Converter for Applications in Smart Grids: An Experimental Validation\", in 2019 IEEE SEST International Conference on Smart Energy Systems and Technologies, Porto, Portugal, Sept. 2019.","DOI":"10.1109\/SEST.2019.8849084"}],"container-title":["EAI Endorsed Transactions on Energy Web"],"original-title":[],"link":[{"URL":"https:\/\/publications.eai.eu\/index.php\/ew\/article\/download\/3049\/2300","content-type":"application\/pdf","content-version":"vor","intended-application":"text-mining"},{"URL":"https:\/\/publications.eai.eu\/index.php\/ew\/article\/download\/3049\/2300","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,9,21]],"date-time":"2024-09-21T16:54:55Z","timestamp":1726937695000},"score":1,"resource":{"primary":{"URL":"https:\/\/publications.eai.eu\/index.php\/ew\/article\/view\/3049"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,16]]},"references-count":34,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2023,2,16]]}},"URL":"https:\/\/doi.org\/10.4108\/ew.v9i5.3049","relation":{},"ISSN":["2032-944X"],"issn-type":[{"type":"electronic","value":"2032-944X"}],"subject":[],"published":{"date-parts":[[2023,2,16]]}}}