Social networks have an outstanding marketing value and developing data mining methods for viral marketing is a hot topic in the research community. However, most social networks remain impossible to be fully analyzed and understood due to prohibiting sizes and the incapability of traditional machine learning and data mining approaches to deal with the new dimension in the learning process related to the large-scale environment where the data are produced. On one hand, the birth and evolution of such networks has posed outstanding challenges for the learning and mining community, and on the other has opened the possibility for very powerful business applications. However, little understanding exists regarding these business applications and the potential of social network mining to boost marketing. This paper presents a review of the most important state-of-the-art approaches in the machine learning and data mining community regarding analysis of social networks and their business applications. The authors review the problems related to social networks and describe the recent developments in the area discussing important achievements in the analysis of social networks and outlining future work. The focus of the review in not only on the technical aspects of the learning and mining approaches applied to social networks but also on the business potentials of such methods.<\/p>","DOI":"10.4018\/jebr.2013010103","type":"journal-article","created":{"date-parts":[[2013,2,27]],"date-time":"2013-02-27T18:54:25Z","timestamp":1361991265000},"page":"36-53","source":"Crossref","is-referenced-by-count":2,"title":["A Review of Machine Learning and Data Mining Approaches for Business Applications in Social Networks"],"prefix":"10.4018","volume":"9","author":[{"given":"Evis","family":"Trandafili","sequence":"first","affiliation":[{"name":"Polytechnic University of Tirana, Tirana, Albania"}]},{"given":"Marenglen","family":"Biba","sequence":"additional","affiliation":[{"name":"Department of Computer Science, University of New York in Tirana, Tirana, Albania"}]}],"member":"2432","reference":[{"key":"jebr.2013010103-0","doi-asserted-by":"crossref","unstructured":"Abello, J., Resende, M. G. C., & Sudarsky, S. (2002). Massive quasi-clique detection. In Proceedings of LATIN '02 Proceedings of the 5th Latin American Symposium on Theoretical Informatics, pages (pp. 598\u2013612). London, UK: Springer-Verlag.","DOI":"10.1007\/3-540-45995-2_51"},{"issue":"1","key":"jebr.2013010103-1","first-page":"26","article-title":"Measuring propagation in online social networks: The case of YouTube.","volume":"5","author":"R.Afrasiabi","year":"2012","journal-title":"Journal of Information Systems Applied Research"},{"key":"jebr.2013010103-2","doi-asserted-by":"crossref","unstructured":"Arthur, D., Motwani, R., Sharma, A., & Xy, Y. (2009). Pricing strategies for viral marketing on social networks. In Proceedings of the 5th International Workshop on Internet and Network Economics (WINE\u201909) (pp. 101\u2013112).","DOI":"10.1007\/978-3-642-10841-9_11"},{"key":"jebr.2013010103-3","unstructured":"Backstrom, L., & Leskovec, J. (2001). Supervised random walks: Predicting and recommending links in social networks. In Proceedings ACM International Conference on Web Search and Data Mining (WSDM)."},{"key":"jebr.2013010103-4","doi-asserted-by":"crossref","unstructured":"Bellog\u00edn, A., Cantador, I., & Castells, P. (2010). A study of heterogeneity in recommendations for a social music service. In Proceedings of HetRec '10 Proceedings of the 1st International Workshop on Information Heterogeneity and Fusion in Recommender Systems, New York, NY: ACM.","DOI":"10.1145\/1869446.1869447"},{"key":"jebr.2013010103-5","unstructured":"Bilgic, M., & Getoor, L. (2009). Link-based active learning. In Neural Information Processing Systems (NIPS) Workshop on Analyzing Networks and Learning with Graphs."},{"key":"jebr.2013010103-6","doi-asserted-by":"crossref","unstructured":"Broecheler, M., Shakarian, P., & Subrahmanian, V. S. (2010). A scalable framework for modeling competitive diffusion in social networks. In Proceedings of the 2010 IEEE Second International Conference on Social Computing, SocialCom \/ IEEE International Conference on Privacy, Security, Risk and Trust, PASSAT 2010 (pp. 295-302). IEEE Computer Society.","DOI":"10.1109\/SocialCom.2010.49"},{"key":"jebr.2013010103-7","doi-asserted-by":"crossref","unstructured":"Buriol, L. S., Frahling, G., Leonardi, S., Marchetti-Spaccamela, A., & Sohler, C. (2006). Counting triangles in data streams. In Proceedings of the Twenty-Fifth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems (pp. 253\u2013262). New York, NY: ACM.","DOI":"10.1145\/1142351.1142388"},{"key":"jebr.2013010103-8","doi-asserted-by":"crossref","unstructured":"Bustos, F., L\u00f3pez, J., Juli\u00e1n, V., & Rebollo, M. (2009). STRS: Social network based recommender system for tourism enhanced with trust. In Proceeding of the International Symposium on Distributed Computing and Artificial Intelligence DCAI 2008, Advances in Soft Computing (Vol. 50, pp. 71-79). Springer.","DOI":"10.1007\/978-3-540-85863-8_10"},{"issue":"3","key":"jebr.2013010103-9","first-page":"291","article-title":"SIM: A dynamic multidimensional visualization method for social networks.","volume":"6","author":"M. C.Caschera","year":"2008","journal-title":"PsychNology Journal"},{"key":"jebr.2013010103-10","doi-asserted-by":"crossref","unstructured":"Caschera, M. C., Ferri, F., Grifoni, P., & Guzzo, T. (2009). Multidimensional visualization system for travel social networks. In Proceedings of the 6th International Conference on Information Technology: New Generations ITNG 2009 (pp.1510-1516). IEEE Computer Society.","DOI":"10.1109\/ITNG.2009.236"},{"key":"jebr.2013010103-11","doi-asserted-by":"publisher","DOI":"10.1038\/nature06830"},{"key":"jebr.2013010103-12","first-page":"1","article-title":"Finding community structure in very large networks.","author":"A.Clauset","year":"2004","journal-title":"Physical Review E: Statistical, Nonlinear, and Soft Matter Physics"},{"key":"jebr.2013010103-13","doi-asserted-by":"crossref","unstructured":"Comar, P. M., Tan, P. A., & Jain, K. (2011, December 11-14). LinkBoost: A novel cost-sensitive boosting framework for community-level network link prediction. In D. J. Cook, J. Pei, W. Wang, O. R. Zaane, & X. Wu (Eds.), Proceedings of the 11th IEEE International Conference on Data Mining (ICDM 2011), Vancouver, Canada. IEEE Computer Society.","DOI":"10.1109\/ICDM.2011.93"},{"key":"jebr.2013010103-14","doi-asserted-by":"publisher","DOI":"10.1504\/IJSNM.2012.045103"},{"key":"jebr.2013010103-15","doi-asserted-by":"crossref","unstructured":"Crandall, D. J., Cosley, D., Huttenlocher, D. P., Kleinberg, J. M., & Suri, S. (2008). Feedback effects between similarity and social influence in online communities. In Proceedings of the 14th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD\u201908).","DOI":"10.1145\/1401890.1401914"},{"key":"jebr.2013010103-16","unstructured":"Dechun, L., & Xi, C. (2011). Rumor propagation in online social networks like Twitter \u2013 A simulation study. In Proceedings of the Third International Conference on Multimedia Information Networking and Security (MINES) (pp. 278 \u2013 282). IEEE Computer Society."},{"key":"jebr.2013010103-17","doi-asserted-by":"crossref","unstructured":"Du, N., Wang, H., & Faloutsos, C. (2010). Analysis of large multi-modal social networks: Patterns and a generator. In Proceedings of the Machine Learning and Knowledge Discovery in Databases, European Conference, ECML PKDD 2010 (LNCS 6321).","DOI":"10.1007\/978-3-642-15880-3_31"},{"key":"jebr.2013010103-18","doi-asserted-by":"crossref","unstructured":"Flake, G. W., Lawrence, S., & Giles, C. L. (2000). Efficient identification of web communities. In Proceedings of the Sixth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, (pp. 150\u2013160). New York, NY: ACM.","DOI":"10.1145\/347090.347121"},{"key":"jebr.2013010103-19","doi-asserted-by":"publisher","DOI":"10.1016\/j.physrep.2009.11.002"},{"key":"jebr.2013010103-20","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.122653799"},{"key":"jebr.2013010103-21","doi-asserted-by":"crossref","unstructured":"Goyal, A., On, B.-W., Bonchi, F., & Lakshmanan, L. V. S. (2009). Gurumine: A pattern mining system for discovering leaders and tribes. In Proceedings of the 25th IEEE International Conference on Data Engineering (ICDE\u201909). IEEE Computer Society.","DOI":"10.1109\/ICDE.2009.59"},{"key":"jebr.2013010103-22","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2006.160"},{"key":"jebr.2013010103-23","doi-asserted-by":"crossref","unstructured":"Huang, Z., & Lin, D. (2009) The time-series link prediction problem with applications in communication surveillance. INFORMS Journal on Computing Spring, 21(2), 286-303.","DOI":"10.1287\/ijoc.1080.0292"},{"key":"jebr.2013010103-24","doi-asserted-by":"crossref","unstructured":"Ienco, D., Bonchi, F., & Castillo, C. (2010). The meme ranking problem: Maximizing microblogging virality. In Proceedings of the SIASP Workshop at IEEE International Conference on Data Mining (ICDM\u201910). IEEE Computer Society.","DOI":"10.1109\/ICDMW.2010.127"},{"key":"jebr.2013010103-25","doi-asserted-by":"crossref","unstructured":"Jianming, H., & Wesley, W. Chu. (2011). Design considerations for a social network-based recommendation system (SNRS). In Community-Built Databases (pp. 73-106). Berlin, Germany: Springer.","DOI":"10.1007\/978-3-642-19047-6_4"},{"key":"jebr.2013010103-26","doi-asserted-by":"crossref","unstructured":"Juszczyszyn, K., Musial, K., & Budka, M. (2011). Link prediction based on subgraph evolution in dynamic social networks. In Proceedings of the 2011 IEEE Third International Conference on Privacy, Security, Risk and Trust (PASSAT) and 2011 IEEE Third International Conference on Social Computing (SocialCom).","DOI":"10.1109\/PASSAT\/SocialCom.2011.15"},{"key":"jebr.2013010103-27","doi-asserted-by":"crossref","unstructured":"Koren, Y. (2003). On spectral graph drawing. In Proceedings of the 9th International Computing and Combinatorics Conference (pp. 496\u2013508). Berlin, Germany: Springer.","DOI":"10.1007\/3-540-45071-8_50"},{"key":"jebr.2013010103-28","doi-asserted-by":"publisher","DOI":"10.1016\/S1389-1286(99)00040-7"},{"key":"jebr.2013010103-29","doi-asserted-by":"crossref","unstructured":"Lahiri, M., & Berger-Wolf, T. Y. (2008, December 15-19) Mining periodic behavior in dynamic social networks. In Proceedings of the 8th IEEE International Conference on Data Mining (ICDM 2008), Pisa, Italy. IEEE Computer Society.","DOI":"10.1109\/ICDM.2008.104"},{"key":"jebr.2013010103-30","doi-asserted-by":"publisher","DOI":"10.1016\/j.tcs.2008.07.017"},{"key":"jebr.2013010103-31","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-6287-4_9"},{"key":"jebr.2013010103-32","doi-asserted-by":"crossref","unstructured":"Leskovec, J., Backstrom, L., Kumar, R., & Tomkins, A. (2008). Microscopic evolution of social networks. In Proceedings of the 14th ACM SIGKDD International Conference textiton Knowledge Discovery and Data Mining (pp. 462\u2013470). New York, NY: ACM.","DOI":"10.1145\/1401890.1401948"},{"key":"jebr.2013010103-33","doi-asserted-by":"crossref","unstructured":"Matsuo, Y., & Yamamoto, Y. (2009). Community gravity: Measuring bidirectional effects by trust and rating on online social networks. In Proceedings of WWW '09 Proceedings of the 18th International Conference on World Wide Web. New York, NY: ACM.","DOI":"10.1145\/1526709.1526810"},{"key":"jebr.2013010103-34","doi-asserted-by":"publisher","DOI":"10.1038\/nature03607"},{"key":"jebr.2013010103-35","doi-asserted-by":"crossref","unstructured":"Perez, L. G., Montes-Berges, B., & Castillo-Mayen, M. R. (2011). Boosting social networks in Social Network-Based Recommender System. In Proceeding of the 11th International Conference on Intelligent Systems Design and Applications (ISDA) (pp. 426\u2013431). IEEE Computer Society.","DOI":"10.1109\/ISDA.2011.6121693"},{"key":"jebr.2013010103-36","doi-asserted-by":"publisher","DOI":"10.1504\/IJSCCPS.2011.043602"},{"key":"jebr.2013010103-37","doi-asserted-by":"publisher","DOI":"10.1073\/pnas.0400054101"},{"key":"jebr.2013010103-38","doi-asserted-by":"publisher","DOI":"10.1504\/IJSNM.2012.045108"},{"key":"jebr.2013010103-39","unstructured":"Rui, Z. (2011). The application of link prediction in web recommendation systems. In Proceedings of 2011 International Conference on E -Business and E -Government (ICEE) (pp. 1\u20133). IEEE Computer Society."},{"key":"jebr.2013010103-40","doi-asserted-by":"crossref","unstructured":"Schank, T., & Wagner, D. (2005). Finding, counting and listing all triangles in large graphs, an experimental study. In S. E. Nikoletseas (Ed.), Workshop on Experimental and Efficient Algorithms (LNCS 3503, pp. 606-609). Berlin, Germany: Springer.","DOI":"10.1007\/11427186_54"},{"key":"jebr.2013010103-41","doi-asserted-by":"crossref","unstructured":"Sozio, M., & Gionis, A. (2010, July 25-28). The community-search problem and how to plan a successful cocktail party. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC. New York, NY: ACM.","DOI":"10.1145\/1835804.1835923"},{"key":"jebr.2013010103-42","doi-asserted-by":"crossref","unstructured":"Tang, J., Sun, J., Wang, C., & Yang, Z. (2009). Social influence analysis in large-scale networks. In Proceedings of the 15th ACMSIGKDD International Conference on Knowledge Discovery and DataMining (KDD\u201909).","DOI":"10.1145\/1557019.1557108"},{"key":"jebr.2013010103-43","doi-asserted-by":"publisher","DOI":"10.1007\/978-1-4419-6045-0_16"},{"key":"jebr.2013010103-44","doi-asserted-by":"crossref","unstructured":"Tirado, J. M., Higuero, D., Isaila, F., & Carretero, J. (2011). Analyzing the impact of events in an online music community. In Proceeding SNS '11 Proceedings of the 4th Workshop on Social Network Systems. New York, NY: ACM. ISBN: 978-1-4503-0728-4.","DOI":"10.1145\/1989656.1989662"},{"key":"jebr.2013010103-45","unstructured":"von Luxburg, U. (2006). A tutorial on spectral clustering (Tech. Rep. 149). Max Planck Institute for Biological Cybernetics."},{"key":"jebr.2013010103-46","doi-asserted-by":"crossref","unstructured":"Wakita, K., & Tsurumi, T. (2007). Finding community structure in mega-scale social networks: [extended abstract]. In Proceedings of the 16th International Conference on World Wide Web, (pp. 1275\u20131276). New York, NY: ACM.","DOI":"10.1145\/1242572.1242805"},{"key":"jebr.2013010103-47","doi-asserted-by":"crossref","unstructured":"Wang, Y., Cong, G., Song, G., & Xie, K. (2010). Community-based greedy algorithm for mining top-K influential nodes in mobile social networks. In Proceedings of the 16th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, Washington, DC.","DOI":"10.1145\/1835804.1835935"},{"key":"jebr.2013010103-48","doi-asserted-by":"crossref","unstructured":"Wang, Z., Tan, Y., & Zhang, M. (2010). Graph-based recommendation on social networks. In Proceedings of the 12th International Asia-Pacific Web Conference (APWEB) (pp. 116\u2013122). IEEE Computer Society.","DOI":"10.1109\/APWeb.2010.60"},{"key":"jebr.2013010103-49","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511815478"},{"key":"jebr.2013010103-50","first-page":"393","article-title":"Collective dynamics of `small-world' networks.","author":"D.Watts","year":"1998","journal-title":"Nature"},{"key":"jebr.2013010103-51","doi-asserted-by":"crossref","unstructured":"Wu, S., Raschid, L., & Rand, W. M. (2011). Future link prediction in the blogosphere for recommendation. In Proceedings of the International Conference on Weblogs and Social Media (ICWSM) 2011.","DOI":"10.2139\/ssrn.1906467"},{"key":"jebr.2013010103-52","doi-asserted-by":"crossref","unstructured":"Xide Lin, C., Mei, Q., Han, J., Jiang, Y., & Danilevsky, M. (2011, December 11-14). The joint inference of topic diffusion and evolution in social communities. In D. J. Cook, J. Pei, W. Wang, O. R. Zaane, & X. Wu (Eds.), In Proceedings of the 11th IEEE International Conference on Data Mining, ICDM 2011, Vancouver, Canada. IEEE Computer Society.","DOI":"10.1109\/ICDM.2011.144"},{"key":"jebr.2013010103-53","doi-asserted-by":"crossref","unstructured":"Yan, G., Chen, G., Eidenbenz, S., & Li, N. (2011). Malware propagation in online social networks: Nature, dynamics, and defense implications. In Proceedings of the 6th ACM Symposium on Information, Computer and Communications Security, ASIACCS '11. New York, NY: ACM. ISBN: 978-1-4503-0564-8","DOI":"10.1145\/1966913.1966939"},{"key":"jebr.2013010103-54","doi-asserted-by":"crossref","unstructured":"Yan, X., He, B., Zhu, F., & Han, J. (2010, March 1-6). Top-K aggregation queries over large networks. In Proceedings of the IEEE 26th International Conference on Data Engineering (ICDE), Long Beach, CA (pp. 377-380).","DOI":"10.1109\/ICDE.2010.5447863"},{"key":"jebr.2013010103-55","first-page":"1","article-title":"Impact of social network structure on content propagation: A study using YouTube data.","author":"H.Yoganarasimhan","year":"2011","journal-title":"Quantitative Marketing and Economics"},{"key":"jebr.2013010103-56","unstructured":"Zheleva, E., Getoor, L., Golbeck, J., & Kuter, U. (2008). Using friendship ties and family circles for link prediction. In Proceedings of the 2nd ACM SIGKDD Workshop on Social Network Mining and Analysis."}],"container-title":["International Journal of E-Business Research"],"original-title":[],"language":"ng","link":[{"URL":"https:\/\/www.igi-global.com\/viewtitle.aspx?TitleId=75460","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,6,1]],"date-time":"2022-06-01T15:58:47Z","timestamp":1654099127000},"score":1,"resource":{"primary":{"URL":"https:\/\/services.igi-global.com\/resolvedoi\/resolve.aspx?doi=10.4018\/jebr.2013010103"}},"subtitle":[""],"short-title":[],"issued":{"date-parts":[[2013,1,1]]},"references-count":57,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2013,1]]}},"URL":"https:\/\/doi.org\/10.4018\/jebr.2013010103","relation":{},"ISSN":["1548-1131","1548-114X"],"issn-type":[{"value":"1548-1131","type":"print"},{"value":"1548-114X","type":"electronic"}],"subject":[],"published":{"date-parts":[[2013,1,1]]}}}