This letter addresses a robust adaptive control for the synchronization method based on a modified polynomial observer (slave system) which tends to follow exponentially the chaotic Colpitts circuits brought back to a topology of the Chua oscillator (master system) with perturbations. The authors derive some less stringent conditions for the exponential and asymptotic stability of adaptive robust control systems at finite time. They provide a proof of stability and convergence (hence, that synchronization takes place) via Lyapunov stability method. That is, the observer (slave system) must synchronize albeit noisy measurements and reject the effect of perturbations on the system dynamics. To highlight their contribution, the authors also present some simulation results with the purpose to compare the proposed method to the classical polynomial observer. Finally, numerical results are used to show the robustness and effectiveness of the proposed control strategy.<\/p>","DOI":"10.4018\/ijsda.2017100103","type":"journal-article","created":{"date-parts":[[2017,8,28]],"date-time":"2017-08-28T14:18:20Z","timestamp":1503929900000},"page":"34-62","source":"Crossref","is-referenced-by-count":8,"title":["Dynamics and Improved Robust Adaptive Control Strategy for the Finite Time Synchronization of Uncertain Nonlinear Systems"],"prefix":"10.4018","volume":"6","author":[{"given":"Kammogne Soup Tewa","family":"Alain","sequence":"first","affiliation":[{"name":"Department of Physics, Faculty of Sciences, University of Dschang, Dschang, Cameroon"}]},{"given":"Kengne","family":"Romanic","sequence":"additional","affiliation":[{"name":"Department of Physics, Faculty of Sciences, University of Dschang, Dschang, Cameroon"}]},{"given":"Fotsin Hilaire","family":"Bertrand","sequence":"additional","affiliation":[{"name":"Department of Physics, Faculty of Sciences, University of Dschang, Dschang, Cameroon"}]}],"member":"2432","reference":[{"key":"IJSDA.2017100103-0","doi-asserted-by":"crossref","DOI":"10.4018\/978-1-4666-7248-2","author":"A. T.Azar","year":"2015","journal-title":"Handbook of Research on Advanced Intelligent Control Engineering and Automation"},{"key":"IJSDA.2017100103-1","volume":"Vol. 575","author":"A. T.Azar","year":"2015","journal-title":"Computational Intelligence applications in Modeling and Control, Studies in Computational Intelligence"},{"key":"IJSDA.2017100103-2","volume":"Vol. 581","author":"A. T.Azar","year":"2015","journal-title":"Chaos Modeling and Control Systems Design, Studies in Computational Intelligence"},{"key":"IJSDA.2017100103-3","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-30340-6"},{"key":"IJSDA.2017100103-4","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-50249-6"},{"key":"IJSDA.2017100103-5","doi-asserted-by":"publisher","DOI":"10.1155\/2017\/7871467"},{"key":"IJSDA.2017100103-6","doi-asserted-by":"crossref","unstructured":"Boulkroune, A., & Bouzeriba, A. Bouden., & T, Azar, A.T. (2016a). Fuzzy Adaptive Synchronization of Uncertain Fractional-order Chaotic Systems. In A.T Azar, & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control, Studies in Fuzziness and Soft Computing (Vol. 337). Germany: Springer-Verlag.","DOI":"10.1007\/978-3-319-30340-6_28"},{"key":"IJSDA.2017100103-7","article-title":"Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input","volume":"Vol. 337","author":"A.Boulkroune","year":"2016","journal-title":"Advances in Chaos Theory and Intelligent Control, Studies in Fuzziness and Soft Computing"},{"key":"IJSDA.2017100103-8","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2007.07.098"},{"issue":"12","key":"IJSDA.2017100103-9","first-page":"2177","article-title":"A Fuzzy-Model-Based Chaotic Synchronization Its Implementation on a Secure Communication System. IEEE Trans.","volume":"8","author":"H. G.Chou","year":"2013","journal-title":"Signal Processing Society"},{"key":"IJSDA.2017100103-10","doi-asserted-by":"publisher","DOI":"10.1109\/31.55064"},{"issue":"5","key":"IJSDA.2017100103-11","first-page":"704","article-title":"On Fundamentals of Electronics, Communications and computer Sciences.","volume":"E76-A","author":"L. O.Chua","year":"1993","journal-title":"IEICE Trans"},{"key":"IJSDA.2017100103-12","doi-asserted-by":"publisher","DOI":"10.1016\/S0960-0779(00)00237-X"},{"key":"IJSDA.2017100103-13","doi-asserted-by":"publisher","DOI":"10.4018\/IJSDA.2016040103"},{"key":"IJSDA.2017100103-14","doi-asserted-by":"publisher","DOI":"10.1088\/0031-8949\/83\/06\/065011"},{"key":"IJSDA.2017100103-15","doi-asserted-by":"publisher","DOI":"10.1155\/2015\/535317"},{"key":"IJSDA.2017100103-16","unstructured":"Kammogne, S.T., Fotsin, H.B., Kounchou, M., & Louodop, P. (2013). A robust observer design for passivity-based synchronization of uncertain modified Colpitts oscillators and circuit simulation. Asian Journal of Science and Technology, 5(1), 029-041."},{"key":"IJSDA.2017100103-17","doi-asserted-by":"publisher","DOI":"10.1109\/81.390276"},{"key":"IJSDA.2017100103-18","doi-asserted-by":"publisher","DOI":"10.4018\/IJSDA.2016070105"},{"key":"IJSDA.2017100103-19","author":"M.Lakshmanan","year":"2010","journal-title":"Dynamics of Nonlinear Time-Delay Systems"},{"key":"IJSDA.2017100103-20","doi-asserted-by":"crossref","first-page":"833","DOI":"10.1007\/978-3-319-50249-6_29","article-title":"Chaotic system modelling using a neural network with optimized structure","volume":"Vol. 688","author":"K.Lamamra","year":"2017","journal-title":"Fractional Order Control and Synchronization of Chaotic Systems, Studies in Computational Intelligence"},{"key":"IJSDA.2017100103-21","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2015.02.005"},{"key":"IJSDA.2017100103-22","doi-asserted-by":"publisher","DOI":"10.1016\/j.amc.2013.04.056"},{"issue":"1","key":"IJSDA.2017100103-23","first-page":"57","article-title":"Chaotic systems synchronization via high order observer design.","volume":"9","author":"J. L.Mata-Machuca","year":"2011","journal-title":"Journal of Applied Research and Technology"},{"key":"IJSDA.2017100103-24","doi-asserted-by":"publisher","DOI":"10.1016\/j.cnsns.2010.01.040"},{"key":"IJSDA.2017100103-25","doi-asserted-by":"crossref","first-page":"165","DOI":"10.1007\/978-3-319-50249-6_6","article-title":"Robust adaptive supervisory fractional order controller for optimal energy management in wind turbine with battery storage","volume":"Vol. 688","author":"B.Meghni","year":"2017","journal-title":"Fractional Order Control and Synchronization of Chaotic Systems, Studies in Computational Intelligence"},{"key":"IJSDA.2017100103-26","doi-asserted-by":"publisher","DOI":"10.4018\/ijsda.2014010103"},{"key":"IJSDA.2017100103-27","doi-asserted-by":"publisher","DOI":"10.4018\/IJSDA.2017010105"},{"key":"IJSDA.2017100103-28","doi-asserted-by":"publisher","DOI":"10.1007\/s13042-016-0566-3"},{"key":"IJSDA.2017100103-29","article-title":"On Inverse Problem of Generalized Synchronization Between Different Dimensional Integer-Order and Fractional-Order Chaotic Systems.","author":"A.Ouannas","year":"2016","journal-title":"Proceedings of the 28th International Conference on Microelectronics"},{"key":"IJSDA.2017100103-30","doi-asserted-by":"publisher","DOI":"10.1002\/mma.4099"},{"issue":"1","key":"IJSDA.2017100103-31","first-page":"20","article-title":"On A Simple Approach for Q-S Synchronization of Chaotic Dynamical Systems in Continuous-Time. Int. J.","volume":"8","author":"A.Ouannas","year":"2017","journal-title":"Computing Science and Mathematics"},{"key":"IJSDA.2017100103-32","doi-asserted-by":"publisher","DOI":"10.1504\/IJCAT.2017.082868"},{"key":"IJSDA.2017100103-33","article-title":"New Control Schemes of Synchronization for Incommensurate and Commensurate Fractional Order Chaotic Systems.","author":"A.Ouannas","year":"2016","journal-title":"Proceedings of the 4th International Conference on Control Engineering & Information Technology CEIT \u201916"},{"key":"IJSDA.2017100103-34","doi-asserted-by":"crossref","unstructured":"Ouannas, A., Azar, A. T., Ziar, T., & Radwan, A. G. (2017c). Study on coexistence of different types of synchronization between different dimensional fractional chaotic systems. In Fractional Order Control and Synchronization of Chaotic Systems, Studies in Computational Intelligence (Vol. 688, pp. 637-6690. Springer-Verlag.","DOI":"10.1007\/978-3-319-50249-6_22"},{"key":"IJSDA.2017100103-35","doi-asserted-by":"crossref","unstructured":"Ouannas, A., Azar, A. T., Ziar, T., & Radwan, A. G. (2017d). Generalized Synchronization of Different Dimensional Integer-order and Fractional Order Chaotic Systems. In Fractional Order Control and Synchronization of Chaotic Systems, Studies in Computational Intelligence (Vol. 688, 671-697, Springer-Verlag.","DOI":"10.1007\/978-3-319-50249-6_23"},{"key":"IJSDA.2017100103-36","doi-asserted-by":"crossref","unstructured":"Ouannas, A., Azar, A. T., Ziar, T., & Vaidyanathan, S. (2017a). Fractional inverse generalized chaos synchronization between different dimensional systems. In Fractional Order Control and Synchronization of Chaotic Systems, Studies in Computational Intelligence (Vol. 688, pp. 525-551). Springer-Verlag.","DOI":"10.1007\/978-3-319-50249-6_18"},{"key":"IJSDA.2017100103-37","doi-asserted-by":"crossref","unstructured":"Ouannas, A., Azar, A. T., Ziar, T., & Vaidyanathan, S. (2017b). A new method to synchronize fractional chaotic systems with different dimensions. In Fractional Order Control and Synchronization of Chaotic Systems, Studies in Computational Intelligence (Vol. 688, pp. 581-611). Springer-Verlag.","DOI":"10.1007\/978-3-319-50249-6_20"},{"key":"IJSDA.2017100103-38","doi-asserted-by":"crossref","unstructured":"Ouannas, A., Azar, A. T., Ziar, T., & Vaidyanathan, S. (2017e). On New Fractional Inverse Matrix Projective Synchronization Schemes. In Fractional Order Control and Synchronization of Chaotic Systems, Studies in Computational Intelligence (Vol. 688, pp. 497-524). Springer-Verlag.","DOI":"10.1007\/978-3-319-50249-6_17"},{"key":"IJSDA.2017100103-39","doi-asserted-by":"crossref","unstructured":"Pham, V. T., Vaidyanathan, S., Volos, C. K., Azar, A. T., Hoang, T. M., & Yem, V. V. (2017). A Three-Dimensional No-Equilibrium Chaotic System: Analysis, Synchronization and Its Fractional Order Form. In Fractional Order Control and Synchronization of Chaotic Systems, Studies in Computational Intelligence (Vol. 688, pp. 449-470). Springer-Verlag.","DOI":"10.1007\/978-3-319-50249-6_15"},{"key":"IJSDA.2017100103-40","doi-asserted-by":"publisher","DOI":"10.1017\/CBO9780511755743"},{"key":"IJSDA.2017100103-41","doi-asserted-by":"publisher","DOI":"10.1016\/j.chaos.2009.04.055"},{"key":"IJSDA.2017100103-42","doi-asserted-by":"publisher","DOI":"10.4018\/IJSDA.2017010104"},{"issue":"6","key":"IJSDA.2017100103-43","first-page":"376","article-title":"Is the colpitts a relative of chua\u2019s circuit?","volume":"42","author":"G.Sarafian","year":"1995","journal-title":"IEEE Trans. Circ. Systems I"},{"key":"IJSDA.2017100103-44","doi-asserted-by":"publisher","DOI":"10.1119\/1.11504"},{"key":"IJSDA.2017100103-45","doi-asserted-by":"publisher","DOI":"10.1016\/j.neunet.2016.07.005"},{"key":"IJSDA.2017100103-46","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-13132-0_1"},{"key":"IJSDA.2017100103-47","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-11173-5_19"},{"key":"IJSDA.2017100103-48","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-11173-5_20"},{"key":"IJSDA.2017100103-49","author":"S.Vaidyanathan","year":"2016","journal-title":"Dynamic Analysis, Adaptive Feedback Control and Synchronization of an Eight-Term 3-D Novel Chaotic System with Three Quadratic Nonlinearities"},{"key":"IJSDA.2017100103-50","author":"S.Vaidyanathan","year":"2016","journal-title":"Qualitative Study and Adaptive Control of a Novel 4-D Hyperchaotic System with Three Quadratic Nonlinearities"},{"key":"IJSDA.2017100103-51","author":"S.Vaidyanathan","year":"2016","journal-title":"A Novel 4-D Four-Wing Chaotic System with Four Quadratic Nonlinearities and its Synchronization via Adaptive Control Method"},{"key":"IJSDA.2017100103-52","author":"S.Vaidyanathan","year":"2016","journal-title":"Adaptive Backstepping Control and Synchronization of a Novel 3-D Jerk System with an Exponential Nonlinearity"},{"key":"IJSDA.2017100103-53","author":"S.Vaidyanathan","year":"2016","journal-title":"A Novel 4-D Four-Wing Chaotic System with Four Quadratic Nonlinearities and its Synchronization via Adaptive Control Method"},{"key":"IJSDA.2017100103-54","author":"S.Vaidyanathan","year":"2016","journal-title":"Adaptive Control and Synchronization of Halvorsen Circulant Chaotic Systems. Advances in Chaos Theory and Intelligent Control"},{"key":"IJSDA.2017100103-55","author":"S.Vaidyanathan","year":"2016","journal-title":"Generalized Projective Synchronization of a Novel Hyperchaotic Four-Wing System via Adaptive Control Method"},{"key":"IJSDA.2017100103-56","doi-asserted-by":"publisher","DOI":"10.1504\/IJIEI.2016.076699"},{"key":"IJSDA.2017100103-57","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-13132-0_2"},{"key":"IJSDA.2017100103-58","doi-asserted-by":"crossref","unstructured":"Vaidyanathan, S., Azar, A. T., & Ouannas, A. (2017a). An Eight-Term 3-D Novel Chaotic System with Three Quadratic Nonlinearities, its Adaptive Feedback Control and Synchronization. In Fractional Order Control and Synchronization of Chaotic Systems, Studies in Computational Intelligence (Vol. 688, pp. 719-746). Springer-Verlag.","DOI":"10.1007\/978-3-319-50249-6_25"},{"key":"IJSDA.2017100103-59","doi-asserted-by":"crossref","first-page":"773","DOI":"10.1007\/978-3-319-50249-6_27","article-title":"Hyperchaos and Adaptive Control of a Novel Hyperchaotic System with Two Quadratic Nonlinearities","volume":"Vol. 688","author":"S.Vaidyanathan","year":"2017","journal-title":"Fractional Order Control and Synchronization of Chaotic Systems, Studies in Computational Intelligence"},{"key":"IJSDA.2017100103-60","doi-asserted-by":"publisher","DOI":"10.1504\/IJMIC.2015.069936"},{"key":"IJSDA.2017100103-61","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-13132-0_3"},{"key":"IJSDA.2017100103-62","doi-asserted-by":"publisher","DOI":"10.1504\/IJMIC.2015.067495"},{"key":"IJSDA.2017100103-63","doi-asserted-by":"crossref","unstructured":"Wang, Z., Volos, C., Kingni, S.T., Azar, A.T., & Pham, V.T. (2017). Four-wing attractors in a novel chaotic system with hyperbolic sine nonlinearity. Optik - International Journal for Light and Electron Optics, 131, 1071-1078.","DOI":"10.1016\/j.ijleo.2016.12.016"},{"key":"IJSDA.2017100103-64","doi-asserted-by":"publisher","DOI":"10.1016\/j.physleta.2010.01.023"},{"key":"IJSDA.2017100103-65","author":"Q.Zhu","year":"2015","journal-title":"Complex system modelling and control through intelligent soft computations"}],"container-title":["International Journal of System Dynamics Applications"],"original-title":[],"language":"ng","link":[{"URL":"https:\/\/www.igi-global.com\/viewtitle.aspx?TitleId=188802","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,7]],"date-time":"2022-05-07T00:17:45Z","timestamp":1651882665000},"score":1,"resource":{"primary":{"URL":"https:\/\/services.igi-global.com\/resolvedoi\/resolve.aspx?doi=10.4018\/IJSDA.2017100103"}},"subtitle":[""],"short-title":[],"issued":{"date-parts":[[2017,10,1]]},"references-count":66,"journal-issue":{"issue":"4","published-print":{"date-parts":[[2017,10]]}},"URL":"https:\/\/doi.org\/10.4018\/ijsda.2017100103","relation":{},"ISSN":["2160-9772","2160-9799"],"issn-type":[{"value":"2160-9772","type":"print"},{"value":"2160-9799","type":"electronic"}],"subject":[],"published":{"date-parts":[[2017,10,1]]}}}