{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,5,6]],"date-time":"2022-05-06T16:40:20Z","timestamp":1651855220394},"reference-count":49,"publisher":"IGI Global","issue":"1","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2019,1,1]]},"abstract":"

Mapping land cover change is useful for various environmental and urban planning applications, e.g. land management, forest conservation, ecological assessment, transportation planning, and impervious surface control. As the optimal change detection approaches, algorithms, and parameters often depend on the phenomenon of interest and the remote sensing imagery used, the goal of this study is to find the optimal procedure for detecting urban growth in rural, forestry areas using one-meter, four-band NAIP images. Focusing on different types of impervious covers, the authors test the optimal segmentation parameters for object-based image analysis, and conclude that the random tree classifier, among the six classifiers compared, is most optimal for land use\/cover change detection analysis with a satisfying overall accuracy of 87.7%. With continuous free coverage of NAIP images, the optimal change detection procedure concluded in this study is valuable for future analyses of urban growth change detection in rural, forestry environments.<\/p>","DOI":"10.4018\/ijagr.2019010102","type":"journal-article","created":{"date-parts":[[2018,11,13]],"date-time":"2018-11-13T03:37:31Z","timestamp":1542080251000},"page":"31-53","source":"Crossref","is-referenced-by-count":1,"title":["Optimal Methodology for Detecting Land Cover Change in a Forestry, Lakeside Environment Using NAIP Imagery"],"prefix":"10.4018","volume":"10","author":[{"given":"Xiaomin","family":"Qiu","sequence":"first","affiliation":[{"name":"Department of Geography, Geology, and Planning, Missouri State University, Springfield, USA"}]},{"given":"Dexuan","family":"Sha","sequence":"additional","affiliation":[{"name":"Department of Geography and Geo-Information Science, George Mason University, Fairfax, USA"}]},{"given":"Xuelian","family":"Meng","sequence":"additional","affiliation":[{"name":"Department of Geography & Anthropology, Louisiana State University, Baton Rouge, USA"}]}],"member":"2432","reference":[{"key":"IJAGR.2019010102-0","volume":"Vol. 964","author":"J. R.Anderson","year":"1976","journal-title":"A land use and land cover classification for use with remote sensor data ("},{"key":"IJAGR.2019010102-1","doi-asserted-by":"publisher","DOI":"10.1016\/j.jag.2011.06.005"},{"key":"IJAGR.2019010102-2","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-47037-5_2"},{"key":"IJAGR.2019010102-3","author":"G.Banko","year":"1998","journal-title":"A Review of Assessing the Accuracy of Classifications of Remotely Sensed Data and of Methods Including Remote Sensing Data in Forest Inventory"},{"key":"IJAGR.2019010102-4","first-page":"368","article-title":"Semi-supervised support vector machines.","volume":"10","author":"K. P.Bennett","year":"1998","journal-title":"Advances in Neural Information Processing Systems"},{"key":"IJAGR.2019010102-5","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2003.10.002"},{"key":"IJAGR.2019010102-6","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2009.06.004"},{"key":"IJAGR.2019010102-7","doi-asserted-by":"publisher","DOI":"10.1080\/01431160500222608"},{"key":"IJAGR.2019010102-8","doi-asserted-by":"publisher","DOI":"10.1080\/01431161.2011.648285"},{"key":"IJAGR.2019010102-9","doi-asserted-by":"publisher","DOI":"10.14358\/PERS.69.4.369"},{"key":"IJAGR.2019010102-10","doi-asserted-by":"publisher","DOI":"10.2111\/REM-D-09-00129.1"},{"issue":"2","key":"IJAGR.2019010102-11","first-page":"221","article-title":"Review of change detection techniques from remotely sensed images.","volume":"10","author":"B. R.Deilami","year":"2015","journal-title":"Research Journal of Applied Sciences, Engineering and Technology"},{"key":"IJAGR.2019010102-12","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2006.01.013"},{"key":"IJAGR.2019010102-13","doi-asserted-by":"publisher","DOI":"10.3808\/jei.200700096"},{"key":"IJAGR.2019010102-14","doi-asserted-by":"publisher","DOI":"10.1080\/01431169308953962"},{"key":"IJAGR.2019010102-15","doi-asserted-by":"publisher","DOI":"10.1016\/S0034-4257(96)00067-3"},{"key":"IJAGR.2019010102-16","doi-asserted-by":"publisher","DOI":"10.1080\/01431161003645808"},{"key":"IJAGR.2019010102-17","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2011.11.006"},{"key":"IJAGR.2019010102-18","doi-asserted-by":"publisher","DOI":"10.1016\/S0303-2434(03)00010-2"},{"key":"IJAGR.2019010102-19","doi-asserted-by":"publisher","DOI":"10.1080\/014311600210209"},{"key":"IJAGR.2019010102-20","doi-asserted-by":"publisher","DOI":"10.3390\/rs3112364"},{"key":"IJAGR.2019010102-21","doi-asserted-by":"publisher","DOI":"10.1016\/j.isprsjprs.2013.03.006"},{"key":"IJAGR.2019010102-22","first-page":"255","article-title":"Image enhancement","author":"J. R.Jensen","year":"2007","journal-title":"Introductory Digital Image Processing"},{"key":"IJAGR.2019010102-23","doi-asserted-by":"publisher","DOI":"10.4135\/9780857021052.n19"},{"key":"IJAGR.2019010102-24","doi-asserted-by":"publisher","DOI":"10.1002\/sam.10119"},{"key":"IJAGR.2019010102-25","doi-asserted-by":"publisher","DOI":"10.1016\/j.apgeog.2014.05.002"},{"key":"IJAGR.2019010102-26","doi-asserted-by":"publisher","DOI":"10.1016\/j.jag.2014.04.018"},{"key":"IJAGR.2019010102-27","doi-asserted-by":"publisher","DOI":"10.3390\/rs61111372"},{"key":"IJAGR.2019010102-28","first-page":"658","article-title":"An unsupervised classification scheme using PDDP method for network intrusion detection.","volume":"3","author":"J.Liu","year":"2008","journal-title":"Intelligent Information Technology Application"},{"key":"IJAGR.2019010102-29","doi-asserted-by":"publisher","DOI":"10.1080\/0143116031000139863"},{"key":"IJAGR.2019010102-30","doi-asserted-by":"publisher","DOI":"10.1080\/07038992.2016.1160772"},{"key":"IJAGR.2019010102-31","doi-asserted-by":"publisher","DOI":"10.1080\/15481603.2014.912874"},{"key":"IJAGR.2019010102-32","doi-asserted-by":"publisher","DOI":"10.3390\/ijgi6050147"},{"key":"IJAGR.2019010102-33","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2005.08.011"},{"key":"IJAGR.2019010102-34","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2003.12.007"},{"key":"IJAGR.2019010102-35","doi-asserted-by":"publisher","DOI":"10.1080\/01431161003745657"},{"key":"IJAGR.2019010102-36","unstructured":"Puissant, A., Zhang, W., & Skupinski, G. (2012, May). Urban morphology analysis by high and very high spatial resolution remote sensing. Paper presented at thefourth international conference on Geographic Object-Based Image Analysis (GEOBIA), Rio de Janeiro, Brazil."},{"key":"IJAGR.2019010102-37","doi-asserted-by":"publisher","DOI":"10.1080\/15481603.2014.963982"},{"key":"IJAGR.2019010102-38","doi-asserted-by":"crossref","unstructured":"Rippey, B. R. (2015). The U.S. drought of 2012, Weather and Climate Extremes, 10(Part A), 57-64.","DOI":"10.1016\/j.wace.2015.10.004"},{"key":"IJAGR.2019010102-39","doi-asserted-by":"publisher","DOI":"10.1016\/j.apgeog.2010.11.006"},{"key":"IJAGR.2019010102-40","doi-asserted-by":"publisher","DOI":"10.1080\/01431168908903939"},{"key":"IJAGR.2019010102-41","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-03647-7_27"},{"key":"IJAGR.2019010102-42","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2015.01.006"},{"key":"IJAGR.2019010102-43","doi-asserted-by":"publisher","DOI":"10.1109\/36.175340"},{"key":"IJAGR.2019010102-44","doi-asserted-by":"publisher","DOI":"10.1109\/TGRS.2008.2010404"},{"key":"IJAGR.2019010102-45","unstructured":"U.S. Census Bureau. (2010). Missouri population: Stone county. Retrieved from http:\/\/censusviewer.com\/cities\/MO"},{"key":"IJAGR.2019010102-46","doi-asserted-by":"publisher","DOI":"10.1016\/j.rse.2006.10.012"},{"key":"IJAGR.2019010102-47","unstructured":"Webb, J., Brewer, C. K., Daniels, N., Maderia, C., Hamilton, R., Finco, M., . . . Lister, A. J. (2012). Image-based change estimation for land cover and land use monitoring. In R. S. Morin & G. C. Liknes (Ed.), Moving from Status to Trends: Forest Inventory and Analysis Symposium 2012. Newtown Square, PA: U.S. Department of Agriculture, Forest Service, Northern Research Station."},{"key":"IJAGR.2019010102-48","first-page":"21","article-title":"Survey of multispectral methods for land cover change analysis","author":"D.Yuan","year":"1998","journal-title":"Remote Sensing Change Detection: Environmental Monitoring Methods and Applications"}],"container-title":["International Journal of Applied Geospatial Research"],"original-title":[],"language":"ng","link":[{"URL":"https:\/\/www.igi-global.com\/viewtitle.aspx?TitleId=218205","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,6]],"date-time":"2022-05-06T16:14:21Z","timestamp":1651853661000},"score":1,"resource":{"primary":{"URL":"https:\/\/services.igi-global.com\/resolvedoi\/resolve.aspx?doi=10.4018\/IJAGR.2019010102"}},"subtitle":[""],"short-title":[],"issued":{"date-parts":[[2019,1,1]]},"references-count":49,"journal-issue":{"issue":"1","published-print":{"date-parts":[[2019,1]]}},"URL":"https:\/\/doi.org\/10.4018\/ijagr.2019010102","relation":{},"ISSN":["1947-9654","1947-9662"],"issn-type":[{"value":"1947-9654","type":"print"},{"value":"1947-9662","type":"electronic"}],"subject":[],"published":{"date-parts":[[2019,1,1]]}}}