{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,1,12]],"date-time":"2024-01-12T00:00:41Z","timestamp":1705017641162},"reference-count":76,"publisher":"IGI Global","issue":"2","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":[],"published-print":{"date-parts":[[2018,4]]},"abstract":"This article describes how coffee rust has become a serious concern for many coffee farmers and manufacturers. The American Phytopathological Society discusses its importance saying this: \u201c\u2026the most economically important coffee disease in the world\u2026\u201d while \u201c\u2026in monetary value, coffee is the most important agricultural product in international trade\u2026\u201d The early detection has inspired researchers to apply supervised learning algorithms on predicting the disease appearance. However, the main issue of the related works is the small number of samples of the dependent variable: Incidence Percentage of Rust, since the datasets do not have a reliable representation of the disease, which will generate inaccurate predictions in the models. This article provides a process about coffee rust to select appropriate machine learning methods to increase rust samples.<\/jats:p>","DOI":"10.4018\/ijaeis.2018040103","type":"journal-article","created":{"date-parts":[[2018,3,22]],"date-time":"2018-03-22T14:26:22Z","timestamp":1521728782000},"page":"32-52","source":"Crossref","is-referenced-by-count":4,"title":["A Process for Increasing the Samples of Coffee Rust Through Machine Learning Methods"],"prefix":"10.4018","volume":"9","author":[{"given":"Jhonn Pablo","family":"Rodr\u00edguez","sequence":"first","affiliation":[{"name":"University of Cauca, Popay\u00e1n, Colombia"}]},{"given":"David Camilo","family":"Corrales","sequence":"additional","affiliation":[{"name":"Telematic Engineering Group, University of Cauca, Popay\u00e1n, Colombia and Department of Computer Science and Engineering, Carlos III University of Madrid, Madrid, Spain"}]},{"given":"Juan Carlos","family":"Corrales","sequence":"additional","affiliation":[{"name":"Telematic Engineering Group, University of Cauca, Popay\u00e1n, Colombia"}]}],"member":"2432","reference":[{"key":"IJAEIS.2018040103-0","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2015.2458858"},{"key":"IJAEIS.2018040103-1","unstructured":"Albayrak, S. A. S. (2013). Alleviating the Class Imbalance problem in Data Mining. Retrieved from http:\/\/worldcomp-proceedings.com\/proc\/p2013\/DMI8016.pdf"},{"key":"IJAEIS.2018040103-2","doi-asserted-by":"publisher","DOI":"10.1109\/TVCG.2011.237"},{"key":"IJAEIS.2018040103-3","doi-asserted-by":"publisher","DOI":"10.1109\/BigData.2014.7004228"},{"key":"IJAEIS.2018040103-4","author":"J.Arcila","year":"2007","journal-title":"Sistemas de produccion de cafe en colombia"},{"key":"IJAEIS.2018040103-5","doi-asserted-by":"publisher","DOI":"10.1094\/PHI-I-2000-0718-02"},{"key":"IJAEIS.2018040103-6","doi-asserted-by":"publisher","DOI":"10.1007\/s12571-015-0446-9"},{"key":"IJAEIS.2018040103-7","doi-asserted-by":"publisher","DOI":"10.1016\/j.cam.2015.12.034"},{"key":"IJAEIS.2018040103-8","doi-asserted-by":"publisher","DOI":"10.1186\/s12911-016-0318-z"},{"key":"IJAEIS.2018040103-9","unstructured":"Bhavsar, H., & Ganatra, A. (n.d.). A Comparative Study of Training Algorithms for Supervised Machine Learning."},{"key":"IJAEIS.2018040103-10","author":"L.Breiman","year":"1984","journal-title":"Classification and Regression Trees"},{"issue":"3","key":"IJAEIS.2018040103-11","first-page":"233","article-title":"Warning models for coffee rust control in growing areas with large fruit load.","volume":"44","author":"A. A.Carlos","year":"2009","journal-title":"Pesquisa Agropecu\u00e1ria Brasileira"},{"key":"IJAEIS.2018040103-12","unstructured":"Cesare di Girolamo, L. H. R. (2013a). Desenvolvimento e sele\u00e7\u00e3o de modelos de alerta para a ferrugem do cafeeiro em anos de alta carga pendente de frutos."},{"key":"IJAEIS.2018040103-13","unstructured":"Cesare di Girolamo, L. H. R. (2013b). Potencial de t\u00e9cnicas de minera\u00e7\u00e3o de dados para modelos de alerta da ferrugem do cafeeiro."},{"key":"IJAEIS.2018040103-14","doi-asserted-by":"publisher","DOI":"10.1007\/0-387-25465-X_40"},{"key":"IJAEIS.2018040103-15","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-39804-2_12"},{"key":"IJAEIS.2018040103-16","doi-asserted-by":"publisher","DOI":"10.1109\/ISDA.2011.6121847"},{"key":"IJAEIS.2018040103-17","doi-asserted-by":"crossref","unstructured":"Corrales, D. C., Casas, A. F., Ledezma, A., & Corrales, J. C. (n.d.). Two-Level Classifier Ensembles for Coffee Rust Estimation in Colombian Crops. International Journal of Agricultural and Environmental Information Systems, 7, 41\u201359.","DOI":"10.4018\/IJAEIS.2016070103"},{"key":"IJAEIS.2018040103-18","doi-asserted-by":"publisher","DOI":"10.11144\/Javeriana.iyu19-1.tdcd"},{"key":"IJAEIS.2018040103-19","doi-asserted-by":"crossref","unstructured":"Corrales, D. C., Figueroa, A., Ledezma, A., & Corrales, J. C. (2015). An Empirical Multi-classifier for Coffee Rust Detection in Colombian Crops. In O. Gervasi, B. Murgante, S. Misra, M. L. Gavrilova, A. M. A. C. Rocha, C. Torre, \u2026 B. O. Apduhan (Eds.), Computational Science and Its Applications -- ICCSA 2015 (pp. 60\u201374). Springer International Publishing. Retrieved from http:\/\/link.springer.com\/chapter\/10.1007\/978-3-319-21404-7_5","DOI":"10.1007\/978-3-319-21404-7_5"},{"key":"IJAEIS.2018040103-20","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-62395-5_1"},{"key":"IJAEIS.2018040103-21","doi-asserted-by":"publisher","DOI":"10.18046\/syt.v12i29.1802"},{"issue":"25","key":"IJAEIS.2018040103-22","first-page":"59","article-title":"Early warning system for coffee rust disease based on error correcting output codes: A proposal.","volume":"13","author":"D. C.Corrales","year":"2014","journal-title":"Revista Ingenier\u00edas Universidad de Medell\u00edn"},{"key":"IJAEIS.2018040103-23","unstructured":"Di Girolamo Neto, C., Rodrigues, L. H. A., & Meira, C. A. A. (2014, July 22). Modelos de predi\u00e7\u00e3o da ferrugem do cafeeiro (Hemileia vastatrix Berkeley & Broome) por t\u00e9cnicas de minera\u00e7\u00e3o de dados. Artigo em peri\u00f3dico indexado (ALICE). Retrieved February 3, 2016, from http:\/\/www.alice.cnptia.embrapa.br\/handle\/doc\/991078"},{"key":"IJAEIS.2018040103-24","doi-asserted-by":"publisher","DOI":"10.1016\/j.csda.2011.06.006"},{"key":"IJAEIS.2018040103-25","doi-asserted-by":"publisher","DOI":"10.2307\/1403797"},{"key":"IJAEIS.2018040103-26","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCC.2011.2161285"},{"key":"IJAEIS.2018040103-27","unstructured":"A. Garcia, A. L. (2011). Resumo metodol\u00f3gico de avalia\u00e7\u00e3o das vari\u00e1veis fenol\u00f3gicas e fitoss\u00e2nit\u00e1rias do sistema de avisos fitoss\u00e2nit\u00e1rios do mapa\/ procaf\u00e9."},{"key":"IJAEIS.2018040103-28","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-24677-0_111"},{"key":"IJAEIS.2018040103-29","doi-asserted-by":"publisher","DOI":"10.1145\/1007730.1007736"},{"key":"IJAEIS.2018040103-30","doi-asserted-by":"publisher","DOI":"10.1109\/ICSIMA.2015.7559030"},{"key":"IJAEIS.2018040103-31","doi-asserted-by":"publisher","DOI":"10.1007\/11538059_91"},{"key":"IJAEIS.2018040103-32","unstructured":"Haykin, S. (1998). Neural Networks: A Comprehensive Foundation (2nd ed.) Neural Networks: A Comprehensive Foundation. Retrieved from https:\/\/www.researchgate.net\/publication\/233784957_Neural_Networks_A_Comprehensive_Foundation_2nd_Edition_Neural_Networks_A_Comprehensive_Foundation"},{"key":"IJAEIS.2018040103-33","doi-asserted-by":"publisher","DOI":"10.1109\/ICNNB.2005.1614671"},{"key":"IJAEIS.2018040103-34","doi-asserted-by":"publisher","DOI":"10.1109\/TKDE.2008.239"},{"key":"IJAEIS.2018040103-35","doi-asserted-by":"crossref","unstructured":"He, H., & Ma, Y. (2013). Foundations of Imbalanced Learning. In Imbalanced Learning: Foundations, Algorithms, and Applications (p. 216). Wiley-IEEE Press. Retrieved from http:\/\/ieeexplore.ieee.org\/xpl\/articleDetails.jsp?arnumber=6542481","DOI":"10.1002\/9781118646106"},{"key":"IJAEIS.2018040103-36","doi-asserted-by":"publisher","DOI":"10.1002\/(SICI)1099-1689(199909)9:3<191::AID-STVR184>3.0.CO;2-E"},{"key":"IJAEIS.2018040103-37","doi-asserted-by":"publisher","DOI":"10.1016\/j.jvcir.2015.07.006"},{"key":"IJAEIS.2018040103-38","unstructured":"Hunterlab. (2015, January 12). A Solution to the Coffee Rust Epidemic: How Spectrophotometry May Provide the Answers. Retrieved February 13, 2017, from https:\/\/www.hunterlab.com\/blog\/color-food-industry\/searching-solution-coffee-rust-epidemic-spectrophotometry-may-provide-answers\/"},{"key":"IJAEIS.2018040103-39","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2001.989531"},{"key":"IJAEIS.2018040103-40","doi-asserted-by":"crossref","unstructured":"Kerdprasop, N., & Kerdprasop, K. (2011). Predicting Rare Classes of Primary Tumors with Over-Sampling Techniques. In T. Kim, H. Adeli, A. Cuzzocrea, T. Arslan, Y. Zhang, J. Ma, \u2026 X. Canci\u00f3n (Eds.), Database Theory and Application, Bio-Science and Bio-Technology (pp. 151\u2013160). Springer Berlin Heidelberg. Retrieved from http:\/\/link.springer.com.bd.univalle.edu.co\/chapter\/10.1007\/978-3-642-27157-1_17","DOI":"10.1007\/978-3-642-27157-1_17"},{"key":"IJAEIS.2018040103-41","author":"S.Kotsiantis","year":"2007","journal-title":"Supervised Machine Learning: A Review of Classification Techniques"},{"key":"IJAEIS.2018040103-42","unstructured":"L, J. E. H., & G, S. S. (2006). Implementaci\u00f3n de una maquina de vectores soporte empleando FPGA. Scientia Et Technica, 2(31). Retrieved from http:\/\/revistas.utp.edu.co\/index.php\/revistaciencia\/article\/view\/6383"},{"key":"IJAEIS.2018040103-43","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-24129-6_35"},{"key":"IJAEIS.2018040103-44","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-319-70187-5_14"},{"key":"IJAEIS.2018040103-45","doi-asserted-by":"publisher","DOI":"10.1109\/ICDMW.2014.21"},{"key":"IJAEIS.2018040103-46","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2011.05.003"},{"key":"IJAEIS.2018040103-47","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-13025-0_36"},{"key":"IJAEIS.2018040103-48","doi-asserted-by":"publisher","DOI":"10.1109\/ICCKE.2014.6993409"},{"key":"IJAEIS.2018040103-49","doi-asserted-by":"publisher","DOI":"10.1007\/11595755_68"},{"key":"IJAEIS.2018040103-50","unstructured":"Matteo Magnani. (2004). Techniques for Dealing with Missing Data in Knowledge Discovery Tasks."},{"key":"IJAEIS.2018040103-51","doi-asserted-by":"publisher","DOI":"10.1590\/S1982-56762008000200005"},{"key":"IJAEIS.2018040103-52","doi-asserted-by":"publisher","DOI":"10.1109\/IACC.2016.143"},{"key":"IJAEIS.2018040103-53","article-title":"CS 229 Machine Learning Course Materials","author":"A.Ng","year":"2003","journal-title":"University of Stanford"},{"key":"IJAEIS.2018040103-54","doi-asserted-by":"crossref","unstructured":"Nitesh, V. C., Kevin W., B., Lawrence O., H., & W., P. K. (2002). SMOTE: Synthetic Minority Over-sampling Technique. Retrieved from https:\/\/www.cs.cmu.edu\/afs\/cs\/project\/jair\/pub\/volume16\/chawla02a-html\/chawla2002.html","DOI":"10.1613\/jair.953"},{"key":"IJAEIS.2018040103-55","doi-asserted-by":"publisher","DOI":"10.1016\/S0007-1536(63)80005-4"},{"key":"IJAEIS.2018040103-56","doi-asserted-by":"publisher","DOI":"10.1109\/BIGCOMP.2014.6741439"},{"key":"IJAEIS.2018040103-57","unstructured":"Peralvo, M. (2002). Influence of DEM interpolation methods in Drainage Analysis. Retrieved February 20, 2017, from https:\/\/www.researchgate.net\/publication\/237116945_Influence_of_DEM_interpolation_methods_in_Drainage_Analysis"},{"key":"IJAEIS.2018040103-58","unstructured":"P\u00e9rez-Ariza, C. B., Nicholson, A. E., & Flores, M. J. (n.d.). Prediction of Coffee Rust Disease Using Bayesian Networks. In M.G.-O. Andr\u00e9s Cano, & T.D. Nielsen (Ed.), The Sixth European Workshop on Probabilistic Graphical Models (Vols. 1)."},{"key":"IJAEIS.2018040103-59","doi-asserted-by":"crossref","unstructured":"Phillips, G. M. (2003). Univariate Interpolation. In Interpolation and Approximation by Polynomials. Springer New York. Retrieved from http:\/\/link.springer.com\/chapter\/10.1007\/0-387-21682-0_1","DOI":"10.1007\/0-387-21682-0_1"},{"key":"IJAEIS.2018040103-60","unstructured":"Rivillas Osorio, C. A. (2011). La roya del cafeto en Colombia, impacto, manejo y costos de control. Cenicaf\u00e9: Chinchin\u00e1 - Caldas - Colombia."},{"key":"IJAEIS.2018040103-61","doi-asserted-by":"publisher","DOI":"10.1109\/IASP.2012.6425043"},{"key":"IJAEIS.2018040103-62","unstructured":"Schaback, R. (1995). Multivariate Interpolation and Approximation by Translates of a Basis Function. Retrieved February 20, 2017, from http:\/\/www.codecogs.com\/library\/maths\/approximation\/interpolation\/multivariate.php"},{"key":"IJAEIS.2018040103-63","unstructured":"Segrera Francia, S., & Moreno Garc\u00eda, M. N. (2006, March). Multiclasificadores: m\u00e9todos y arquitecturas [Informe t\u00e9cnico]. Retrieved December 29, 2015, from http:\/\/gredos.usal.es\/jspui\/handle\/10366\/21727"},{"key":"IJAEIS.2018040103-64","doi-asserted-by":"publisher","DOI":"10.1109\/TSMCA.2009.2029559"},{"key":"IJAEIS.2018040103-65","doi-asserted-by":"publisher","DOI":"10.1109\/ICCSIT.2008.185"},{"key":"IJAEIS.2018040103-66","doi-asserted-by":"publisher","DOI":"10.1109\/ICDM.2006.29"},{"key":"IJAEIS.2018040103-67","unstructured":"Thamada, T. T., Rodrigues, L. H. A., & Meira, C. A. A. (2015). Predi\u00e7\u00e3o da taxa de progresso da ferrugem do cafeeiro por meio de ensembles. Retrieved from http:\/\/www.sbicafe.ufv.br:80\/handle\/123456789\/4134"},{"key":"IJAEIS.2018040103-68","doi-asserted-by":"publisher","DOI":"10.1016\/j.patrec.2013.04.019"},{"key":"IJAEIS.2018040103-69","doi-asserted-by":"publisher","DOI":"10.1016\/j.asoc.2009.08.003"},{"key":"IJAEIS.2018040103-70","first-page":"281","article-title":"Support Vector Method for Function Approximation, Regression Estimation and Signal Processing","volume":"Vol. 9","author":"V.Vapnik","year":"1997"},{"key":"IJAEIS.2018040103-71","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-642-34654-5_18"},{"key":"IJAEIS.2018040103-72","doi-asserted-by":"publisher","DOI":"10.1007\/978-3-540-27868-9_107"},{"key":"IJAEIS.2018040103-73","doi-asserted-by":"publisher","DOI":"10.1109\/IECON.2013.6699499"},{"key":"IJAEIS.2018040103-74","doi-asserted-by":"publisher","DOI":"10.1016\/j.eswa.2017.02.013"},{"key":"IJAEIS.2018040103-75","doi-asserted-by":"publisher","DOI":"10.1016\/j.inffus.2013.12.003"}],"container-title":["International Journal of Agricultural and Environmental Information Systems"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.igi-global.com\/viewtitle.aspx?TitleId=203021","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2022,5,5]],"date-time":"2022-05-05T22:05:49Z","timestamp":1651788349000},"score":1,"resource":{"primary":{"URL":"http:\/\/services.igi-global.com\/resolvedoi\/resolve.aspx?doi=10.4018\/IJAEIS.2018040103"}},"subtitle":[""],"short-title":[],"issued":{"date-parts":[[2018,4]]},"references-count":76,"journal-issue":{"issue":"2"},"URL":"https:\/\/doi.org\/10.4018\/ijaeis.2018040103","relation":{},"ISSN":["1947-3192","1947-3206"],"issn-type":[{"value":"1947-3192","type":"print"},{"value":"1947-3206","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,4]]}}}