{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2022,9,22]],"date-time":"2022-09-22T02:16:29Z","timestamp":1663812989812},"reference-count":39,"publisher":"American Institute of Mathematical Sciences (AIMS)","issue":"2","content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["MFC"],"published-print":{"date-parts":[[2021]]},"DOI":"10.3934\/mfc.2021003","type":"journal-article","created":{"date-parts":[[2021,4,2]],"date-time":"2021-04-02T08:52:11Z","timestamp":1617353531000},"page":"73","source":"Crossref","is-referenced-by-count":0,"title":["Semi-Supervised classification of hyperspectral images using discrete nonlocal variation Potts Model"],"prefix":"10.3934","volume":"4","author":[{"given":"Linyao","family":"Ge","sequence":"first","affiliation":[]},{"given":"Baoxiang","family":"Huang","sequence":"additional","affiliation":[]},{"given":"Weibo","family":"Wei","sequence":"additional","affiliation":[]},{"given":"Zhenkuan","family":"Pan","sequence":"additional","affiliation":[]}],"member":"2321","reference":[{"key":"key-10.3934\/mfc.2021003-1","doi-asserted-by":"publisher","unstructured":"A. L. Bertozzi, A. Flenner.Diffuse interface models on graphs for classification of high dimensional data, Multiscale Model. Simul.<\/i>, 10<\/b> (2012), 1090-1118.","DOI":"10.1137\/11083109X"},{"key":"key-10.3934\/mfc.2021003-2","doi-asserted-by":"publisher","unstructured":"C. Bo, H. Lu, D. Wang.Spectral-spatial K-Nearest Neighbor approach for hyperspectral image classification, Multimedia Tools Appl.<\/i>, 77<\/b> (2018), 10419-10436.","DOI":"10.1007\/s11042-017-4403-9"},{"key":"key-10.3934\/mfc.2021003-3","doi-asserted-by":"publisher","unstructured":"B. E. Boser, I. M. Guyon, V. N. Vapnik.A training algorithm for optimal margin classifier, Proceedings of the Fifth Annual Workshop on Computational Learning Theory<\/i>, 5<\/b> (1992), 144-152.","DOI":"10.1145\/130385.130401"},{"key":"key-10.3934\/mfc.2021003-4","doi-asserted-by":"publisher","unstructured":"A. Buades, B. Coll, J. M. Morel.A review of image denoising algorithms, with a new one, Multiscale Model. Simul.<\/i>, 4<\/b> (2015), 490-530.","DOI":"10.1137\/040616024"},{"key":"key-10.3934\/mfc.2021003-5","unstructured":"Y. Cai, X. F. Zhu, Z. Sun.Semi-supervised and ensemble learning: A review, Comput. Sci.<\/i>, 44<\/b> (2017), 7-13."},{"key":"key-10.3934\/mfc.2021003-6","doi-asserted-by":"publisher","unstructured":"G. Camps-Valls, L. Bruzzone.Kernel-based methods for hyperspectral image classification, IEEE Transactions on Geoscience and Remote Sensing<\/i>, 43<\/b> (2005), 1351-1362.","DOI":"10.1109\/TGRS.2005.846154"},{"key":"key-10.3934\/mfc.2021003-7","doi-asserted-by":"publisher","unstructured":"G. Camps-Valls, L. Gomez-Chova, J. Munoz-Mari, et al..Composite kernels for hyperspectral image classification, IEEE Geoscience and Remote Sensing Letters<\/i>, 3<\/b> (2006), 93-97.","DOI":"10.1109\/LGRS.2005.857031"},{"key":"key-10.3934\/mfc.2021003-8","doi-asserted-by":"publisher","unstructured":"C. -I. Chang, Hyperspectral Imaging: Techniques for Spectral Detection and Classification<\/i>, Springer, 2003.","DOI":"10.1007\/978-1-4419-9170-6"},{"key":"key-10.3934\/mfc.2021003-9","doi-asserted-by":"publisher","unstructured":"Z. Dou, B. Zhang and X. Yu, A new alternating minimization algorithm for image segmentation, 6th International Conference on Wireless, Mobile and Multi-Media (ICWMMN), 2015.","DOI":"10.1049\/cp. 2015.0936"},{"key":"key-10.3934\/mfc.2021003-10","doi-asserted-by":"publisher","unstructured":"M. D. Farrell, R. M. Mersereau.On the impact of PCA dimension reduction for hyperspectral detection of difficult targets, Geoscience and Remote Sensing Letters<\/i>, 2<\/b> (2005), 192-195.","DOI":"10.1109\/LGRS.2005.846011"},{"key":"key-10.3934\/mfc.2021003-11","doi-asserted-by":"publisher","unstructured":"C. Garcia-Cardona, E. Merkurjev, A. L. Bertozzi, et al..Multiclass data segmentation using diffuse interface methods on graphs, IEEE Transactions on Pattern Analysis and Machine Intelligence<\/i>, 36<\/b> (2014), 1600-1613.","DOI":"10.1109\/TPAMI.2014.2300478"},{"key":"key-10.3934\/mfc.2021003-12","doi-asserted-by":"publisher","unstructured":"G. Gilboa, S. Osher.Nonlocal Operators with Applications to Image Processing, Multiscale Model. Simul.<\/i>, 7<\/b> (2008), 1005-1028.","DOI":"10.1137\/070698592"},{"key":"key-10.3934\/mfc.2021003-13","doi-asserted-by":"publisher","unstructured":"T. Goldstein, B. O'Donoghue, S. Setzer, R. Baraniuk.Fast alternating direction optimization methods, SIAM J. Imaging Sci.<\/i>, 7<\/b> (2014), 1588-1623.","DOI":"10.1137\/120896219"},{"key":"key-10.3934\/mfc.2021003-14","doi-asserted-by":"publisher","unstructured":"J. A. Gualtieri and R. F. Cromp, Support vector machines for hyperspectral remote sensing classification, Proc. SPIE<\/i>, 3584<\/b> (1999).","DOI":"10.1117\/12.339824"},{"key":"key-10.3934\/mfc.2021003-15","doi-asserted-by":"publisher","unstructured":"X. Hao, G. Zhang, S. Ma.Deep learning, International J. Semantic Computing<\/i>, 10<\/b> (2016), 417-439.","DOI":"10.1142\/S1793351X16500045"},{"key":"key-10.3934\/mfc.2021003-16","doi-asserted-by":"publisher","unstructured":"M. He, B. Li and H. Chen, Deep multi-scale 3D deep convolutional neural network for hyperspectral image classification, 2017 IEEE International Conference on Image Processing (ICIP)<\/i>, (2017), 3904\u20133908.","DOI":"10.1109\/ICIP. 2017.8297014"},{"key":"key-10.3934\/mfc.2021003-17","doi-asserted-by":"publisher","unstructured":"W. Hu, Y. Huang, L. Wei, F. Zhang, H. Li.Deep convolutional neural networks for hyperspectral image classification, J. Sensors<\/i>, 2015<\/b> (2015), 1-12.","DOI":"10.1155\/2015\/258619"},{"key":"key-10.3934\/mfc.2021003-18","doi-asserted-by":"publisher","unstructured":"K. Huang, S. Li, X. Kang and L. Fang, Spectral-spatial hyperspectral image classification based on KNN, Sensing and Imaging<\/i>, 17<\/b> (2016).","DOI":"10.1007\/s11220-015-0126-z"},{"key":"key-10.3934\/mfc.2021003-19","doi-asserted-by":"publisher","unstructured":"G. Huo, S. X. Yang, Q. Li, Y. Zhou.A robust and fast method for sidescan sonar image segmentation using nonlocal despeckling and active contour model, IEEE Transactions on Cybernetics<\/i>, 47<\/b> (2017), 855-872.","DOI":"10.1109\/TCYB.2016.2530786"},{"key":"key-10.3934\/mfc.2021003-20","doi-asserted-by":"publisher","unstructured":"S. Jia, L. Shen, Q. Li.Gabor feature-based collaborative representation for hyperspectral imagery classification, IEEE Transactions on Geoscience and Remote Sensing<\/i>, 53<\/b> (2015), 1118-1129.","DOI":"10.1109\/TGRS.2014.2334608"},{"key":"key-10.3934\/mfc.2021003-21","doi-asserted-by":"publisher","unstructured":"S. Kaewpijit, J. Le Moigne, T. El-Ghazawi.Automatic reduction of hyperspectral imagery using wavelet spectral analysis, IEEE Transactions on Geoscience and Remote Sensing<\/i>, 41<\/b> (2003), 863-871.","DOI":"10.1109\/TGRS.2003.810712"},{"key":"key-10.3934\/mfc.2021003-22","doi-asserted-by":"publisher","unstructured":"Y. LeCun, Y. Bengio, G. Hinton.Deep learning, Nature<\/i>, 521<\/b> (2015), 436-444.","DOI":"10.1038\/nature14539"},{"key":"key-10.3934\/mfc.2021003-23","doi-asserted-by":"publisher","unstructured":"F. Li, M. K. Ng, T. Y. Zeng, C. Shen.A multiphase image segmentation method based on fuzzy region competition, SIAM J. Imaging Sci.<\/i>, 3<\/b> (2010), 277-299.","DOI":"10.1137\/080736752"},{"key":"key-10.3934\/mfc.2021003-24","doi-asserted-by":"publisher","unstructured":"G. Li, C. Zhang, F. Gao, X. Zhang.Doubleconvpool-structured 3D-CNN for hyperspectral remote sensing image classification, J. Image and Graphics<\/i>, 24<\/b> (2019), 639-654.","DOI":"10.11834\/jig.180422"},{"key":"key-10.3934\/mfc.2021003-25","doi-asserted-by":"publisher","unstructured":"F. Melgani, L. Bruzzone.Classification of hyperspectral remote sensing images with support vector machines, IEEE Transactions on Geoscience and Remote Sensing<\/i>, 42<\/b> (2004), 1778-1790.","DOI":"10.1109\/TGRS.2004.831865"},{"key":"key-10.3934\/mfc.2021003-26","doi-asserted-by":"publisher","unstructured":"E. Merkurjev, J. Sunu and A. L. Bertozzi, Graph MBO method for multiclass segmentation of hyperspectral stand-off detection video, 2014 IEEE International Conference on Image Processing (ICIP)<\/i>, (2014), 689\u2013693.","DOI":"10.1109\/ICIP. 2014.7025138"},{"key":"key-10.3934\/mfc.2021003-27","doi-asserted-by":"publisher","unstructured":"B. Merriman, J. K. Bence, S. J. Osher.Motion of multiple junctions: A level set approach, J. Comput. Phys.<\/i>, 112<\/b> (1994), 334-363.","DOI":"10.1006\/jcph.1994.1105"},{"key":"key-10.3934\/mfc.2021003-28","doi-asserted-by":"publisher","unstructured":"D. Mumford, J. Shah.Optimal approximation by piecewise smooth function and associated variational problems, Comm. Pure Appl. Math.<\/i>, 42<\/b> (1989), 577-685.","DOI":"10.1002\/cpa.3160420503"},{"key":"key-10.3934\/mfc.2021003-29","doi-asserted-by":"publisher","unstructured":"M. Myllykoski R. Glowinski, T. K\u00e4rkk\u00e4inen, T. Rossi.A new augmented Lagrangian approach for $L^1$-mean curvature image denoising, SIAM J. Imaging Sci.<\/i>, 8<\/b> (2015), 95-125.","DOI":"10.1137\/140962164"},{"key":"key-10.3934\/mfc.2021003-30","doi-asserted-by":"publisher","unstructured":"R. B. Potts, Some generalized order-disorder transformations, in Mathematical Proceedings of the Cambridge Philosophical Society<\/i>, 48, Cambridge Philosophical Society, 1952, 106\u2013109.","DOI":"10.1017\/S0305004100027419"},{"key":"key-10.3934\/mfc.2021003-31","doi-asserted-by":"publisher","unstructured":"L. Shen, S. Jia.Three-dimensional Gabor wavelets for pixel-based hyperspectral imagery classification, IEEE Transactions on Geoscience and Remote Sensing<\/i>, 49<\/b> (2011), 5039-5046.","DOI":"10.1109\/TGRS.2011.2157166"},{"key":"key-10.3934\/mfc.2021003-32","doi-asserted-by":"publisher","unstructured":"J. Wang, C.-I. Chang.Independent component analysis-based dimensionality reduction with applications in hyperspectral image analysis, IEEE Transactions on Geoscience and Remote Sensing<\/i>, 44<\/b> (2006), 1586-1600.","DOI":"10.1109\/TGRS.2005.863297"},{"key":"key-10.3934\/mfc.2021003-33","unstructured":"P. Wang and X. Y. Zhu, Model selection of SVM with RBF kernel and its application, Comput Engrg. Appl.<\/i>, (2003), 72\u201373."},{"key":"key-10.3934\/mfc.2021003-34","doi-asserted-by":"publisher","unstructured":"Y. Wang, L. Wang.Local Gabor convolutional neural network for hyperspectral image classification, Comput. Sci.<\/i>, 47<\/b> (2020), 151-156.","DOI":"10.11896\/jsjkx.190500147"},{"key":"key-10.3934\/mfc.2021003-35","doi-asserted-by":"publisher","unstructured":"C. Yi, L. F. Zhang and X. Zhang, et al., Aerial hyperspectral remote sensing classification dataset of Xiongan New Area (Matiwan Village), J. Remote Sensing<\/i>, (2019).","DOI":"10.11834\/jrs. 20209065"},{"key":"key-10.3934\/mfc.2021003-36","doi-asserted-by":"publisher","unstructured":"L. Zhang, H. Sun, Z. Rao and H. Ji, Hyperspectral imaging technology combined with deep forest model to identify frost-damaged rice seeds, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy<\/i>, 229<\/b> (2020).","DOI":"10.1016\/j. saa. 2019.117973"},{"key":"key-10.3934\/mfc.2021003-37","doi-asserted-by":"publisher","unstructured":"X. Zhang, B. Zhang, L. Zhang and Y. Sun, Hyperspectral remote sensing dataset for tea farm, Global Change Data Repository<\/i>, (2017).","DOI":"10.3974\/geodb. 2017.03.04. V1"},{"key":"key-10.3934\/mfc.2021003-38","doi-asserted-by":"publisher","unstructured":"W. Zhu, V. Chayes, A. Tiard, et al..Unsupervised classification in hyperspectral imagery with nonlocal total variation and primal-dual hybrid gradient algorithm, IEEE Transactions on Geoscience and Remote Sensing<\/i>, 55<\/b> (2017), 2786-2798.","DOI":"10.1109\/TGRS.2017.2654486"},{"key":"key-10.3934\/mfc.2021003-39","unstructured":"S. Zhuo, X. S. Guo and J. Wan, et al., Fast classification algorithm for polynomial kernel support vector machines, Comput. Engrg.<\/i>, 33<\/b> (2007)."}],"container-title":["Mathematical Foundations of Computing"],"original-title":[],"deposited":{"date-parts":[[2021,6,10]],"date-time":"2021-06-10T00:38:11Z","timestamp":1623285491000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.aimsciences.org\/article\/doi\/10.3934\/mfc.2021003"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021]]},"references-count":39,"journal-issue":{"issue":"2","published-print":{"date-parts":[[2021]]}},"alternative-id":["2577-8838_2021_2_73"],"URL":"https:\/\/doi.org\/10.3934\/mfc.2021003","relation":{},"ISSN":["2577-8838"],"issn-type":[{"value":"2577-8838","type":"print"}],"subject":[],"published":{"date-parts":[[2021]]}}}