{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,6,6]],"date-time":"2024-06-06T00:07:56Z","timestamp":1717632476287},"reference-count":34,"publisher":"MDPI AG","issue":"8","license":[{"start":{"date-parts":[[2016,8,17]],"date-time":"2016-08-17T00:00:00Z","timestamp":1471392000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Symmetry"],"abstract":"We have investigated Mn, Co and Ni substitution effects on polycrystalline samples of LaFePO0.95F0.05 by resistivity and magnetoresistance measurements. In LaFe1-xMxPO0.95F0.05 (M = Mn, Co and Ni), the superconducting transition temperature (Tc) monotonously decreases with increasing the impurity doping level of x. There is a clear difference of Tc suppression rates among Mn, Co and Ni doping cases, and the decreasing rate of Tc by Mn doping as a magnetic impurity is larger than those by the nonmagnetic doping impurities (Co\/Ni). This result indicates that in LaFePO0.95F0.05, Tc is rapidly suppressed by the pair-breaking effect of magnetic impurities, and the pairing symmetry is a full-gapped s-wave. In the nonmagnetic impurity-doped systems, the residual resistivity in the normal state has nearly the same value when Tc becomes zero. The residual resistivity value is almost consistent with the universal value of sheet resistance for two-dimensional superconductors, suggesting that Tc is suppressed by electron localization in Co\/Ni-doped LaFePO0.95F0.05.<\/jats:p>","DOI":"10.3390\/sym8080080","type":"journal-article","created":{"date-parts":[[2016,8,17]],"date-time":"2016-08-17T14:23:21Z","timestamp":1471443801000},"page":"80","source":"Crossref","is-referenced-by-count":0,"title":["Superconducting Gap Symmetry of LaFeP(O,F) Observed by Impurity Doping Effect"],"prefix":"10.3390","volume":"8","author":[{"given":"Shigeki","family":"Miyasaka","sequence":"first","affiliation":[{"name":"Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan"}]},{"given":"Sinnosuke","family":"Suzuki","sequence":"additional","affiliation":[{"name":"Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan"}]},{"given":"Setsuko","family":"Tajima","sequence":"additional","affiliation":[{"name":"Department of Physics, Graduate School of Science, Osaka University, Toyonaka, Osaka 560-0043, Japan"}]}],"member":"1968","published-online":{"date-parts":[[2016,8,17]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"10012","DOI":"10.1021\/ja063355c","article-title":"Iron-Based Layered Superconductor: LaOFeP","volume":"128","author":"Kamihara","year":"2006","journal-title":"J. Am. Chem. Soc."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"3296","DOI":"10.1021\/ja800073m","article-title":"Iron-Based Layered Superconductor La[O1\u2212xFx]FeAs (x = 0.05\u20130.12) with Tc = 26 K","volume":"130","author":"Kamihara","year":"2008","journal-title":"J. Am. Chem. Soc."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1016\/j.physc.2015.02.020","article-title":"Iron-based superconductors: Current status of materials and pairing mechanism","volume":"514","author":"Hosono","year":"2015","journal-title":"Phys. C"},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Kuroki, K., Usui, H., Onari, S., Arita, R., and Aoki, H. (2009). Pnictogen height as a possible switch between high-Tc nodeless and low-Tc nodal pairings in the iron-based superconductors. Phys. Rev. B, 79.","DOI":"10.1103\/PhysRevB.79.224511"},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Mazin, I.I., Singh, D.J., Johannes, M.D., and Du, M.H. (2008). Unconventional Superconductivity with a Sign Reversal in the Order Parameter of LaFeAsO1\u2212xFx. Phys. Rev. Lett., 101.","DOI":"10.1103\/PhysRevLett.101.057003"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Kontani, H., and Onari, S. (2010). Orbital-Fluctuation-Mediated Superconductivity in Iron Pnictides: Analysis of the Five-Orbital Hubbard-Holstein. Model. Phys. Rev. Lett., 104.","DOI":"10.1103\/PhysRevLett.104.157001"},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Onari, S., and Kontani, H. (2012). Self-consistent Vertex Correction Analysis for Iron-based Superconductors: Mechanism of Coulomb Interaction-Driven Orbital Fluctuations. Phys. Rev. Lett., 109.","DOI":"10.1103\/PhysRevLett.109.137001"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Ding, H., Richard, P., Nakayama, K., Sugawara, K., Arakane, T., Sekiba, Y., Takayama, A., Souma, S., Sato, T., and Takahashi, T. (2008). Observation of Fermi-surface\u2013dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2. Europhys. Lett., 83.","DOI":"10.1209\/0295-5075\/83\/47001"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Kondo, T., Santander-Syro, A.F., Copie, O., Liu, C., Tillman, M.E., Mun, E.D., Schmalian, J., Bud\u2019ko, S.L., Tanatar, M.A., and Canfield, P.C. (2008). Momentum Dependence of the Superconducting Gap in NdFeAsO0.9F0.1 Single Crystals Measured by Angle Resolved Photoemission Spectroscopy. Phys. Rev. Lett., 101.","DOI":"10.1103\/PhysRevLett.101.147003"},{"key":"ref_10","unstructured":"Nakai, Y., Iye, T., Kitagawa, S., Ishida, K., Kasahara, S., Shibauchi, T., Matsuda, Y., and Terashima, T. (2010). 31P and 75As NMR evidence for a residual density of states at zero energy in superconducting BaFe2(As0.67P0.33)2. Phys. Rev. B, 81."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Hashimoto, K., Yamashita, M., Kasahara, S., Senshu, Y., Nakata, N., Tonegawa, S., Ikada, K., Serafin, A., Carrington, A., and Terashima, T. (2010). Line nodes in the energy gap of superconducting BaFe2(As1\u2212xPx)2 single crystals as seen via penetration depth and thermal conductivity. Phys. Rev. B, 81.","DOI":"10.1103\/PhysRevB.81.220501"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Hashimoto, K., Kasahara, S., Katsumata, R., Mizukami, Y., Yamashita, M., Ikeda, H., Terashima, T., Carrington, A., Matsuda, Y., and Shibauchi, T. (2012). Nodal versus Nodeless Behaviors of the Order Parameters of LiFeP and LiFeAs Superconductors from Magnetic Penetration-Depth Measurements. Phys. Rev. Lett., 108.","DOI":"10.1103\/PhysRevLett.108.047003"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Kinouchi, H., Mukuda, H., Kitaoka, Y., Shirage, P.M., Fujihisa, H., Gotoh, Y., Eisaki, H., and Iyo, A. (2013). Emergent phases of nodeless and nodal superconductivity separated by antiferromagnetic order in iron-based superconductor (Ca4Al2O6)Fe2(As1\u2212xPx)2: 75As- and 31P-NMR studies. Phys. Rev. B, 87.","DOI":"10.1103\/PhysRevB.87.121101"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Thomale, R., Platt, C., Hanke, W., Hu, J., and Bernevig, B.A. (2011). Exotic d-Wave Superconducting State of Strongly Hole-Doped KxBa1-xFe2As2. Phys. Rev. Lett., 107.","DOI":"10.1103\/PhysRevLett.107.117001"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Guguchia, Z., Amato, A., Kang, J., Luetkens, H., Biswas, P.K., Prando, G., von Rohr, F., Bukowski, Z., Shengelaya, A., and Keller, H. (2015). Direct evidence for a pressure-induced nodal superconducting gap in the Ba0.65Rb0.35Fe2As2 superconductor. Nat. Commun., 6.","DOI":"10.1038\/ncomms9863"},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Prando, G., Hartmann, T., Schottenhamel, W., Guguchia, Z., Sanna, S., Ahn, F., Nekrasov, I., Blum, C.G.F., Wolter, A.U.B., and Wurmehl, S. (2015). Mutual Independence of Critical Temperature and Superfluid Density under Pressure in Optimally Electron-Doped Superconducting LaFeAsO1\u2212xFx. Phys. Rev. Lett., 114.","DOI":"10.1103\/PhysRevLett.114.247004"},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Fletcher, J.D., Serafin, A., Malone, L., Analytis, J.G., Chu, J.-H., Erickson, A.S., Fisher, I.R., and Carrington, A. (2009). Evidence for a Nodal-Line Superconducting State in LaFePO. Phys. Rev. Lett., 102.","DOI":"10.1103\/PhysRevLett.102.147001"},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Yamashita, M., Nakata, N., Senshu, Y., Tonegawa, S., Ikada, K., Hashimoto, K., Sugawara, H., Shibauchi, T., and Matsuda, Y. (2009). Thermal conductivity measurements of the energy-gap anisotropy of superconducting LaFePO at low temperatures. Phys. Rev. B, 80.","DOI":"10.1103\/PhysRevB.80.220509"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Sutherland, M., Dunn, J., Toews, W.H., O\u2019Farrell, E., Analytis, J., Fisher, I., and Hill, R.W. (2012). Low-energy quasiparticles probed by heat transport in the iron-based superconductor LaFePO. Phys. Rev. B, 85.","DOI":"10.1103\/PhysRevB.85.014517"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"114712","DOI":"10.1143\/JPSJ.78.114712","article-title":"Systematic Study on Fluorine-Doping Dependence of Superconducting and Normal State Properties in LaFePO1\u2212xFx","volume":"78","author":"Suzuki","year":"2009","journal-title":"J. Phys. Soc. Jpn."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Yanagi, H., Watanabe, T., Kodama, K., Iikubo, S., Shamoto, S., Kamiya, T., Hirano, M., and Hosono, H. (2009). Antiferromagnetic bipolar semiconductor LaMnPO with ZrCuSiAs-type structure. J. Appl. Phys., 105.","DOI":"10.1063\/1.3124582"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Yanagi, H., Kawamura, R., Kamiya, T., Kamihara, Y., Hirano, M., Nakamura, T., Osawa, H., and Hosono, H. (2008). Itinerant ferromagnetism in the layered crystals LaCoOX (X = P,As). Phys. Rev. B, 77.","DOI":"10.1103\/PhysRevB.77.224431"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"7719","DOI":"10.1021\/ic701200e","article-title":"Nickel-Based Oxyphosphide Superconductor with a Layered Crystal Structure, LaNiOP","volume":"46","author":"Watanabe","year":"2007","journal-title":"Inorg. Chem."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Ning, F., Ahilan, K., Imai, T., Sefat, A.S., Jin, R., McGuire, M.A., Sales, B.C., and Mandrus, D. (2008). 59Co and 75As NMR Investigation of Electron-Doped High Tc Superconductor BaFe1.8Co0.2As2 (Tc = 22 K). J. Phys. Soc. Jpn., 77.","DOI":"10.1143\/JPSJ.77.103705"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Tucker, G.S., Pratt, D.K., Kim, M.G., Ran, S., Thaler, A., Granroth, G.E., Marty, K., Tian, W., Zarestky, J.L., and Lumsden, M.D. (2012). Competition between stripe and checkerboard magnetic instabilities in Mn-doped BaFe2As2. Phys. Rev. B, 86.","DOI":"10.1103\/PhysRevB.86.020503"},{"key":"ref_26","unstructured":"Thaler, A., Hodovanets, H., Torikachvili, M.S., Ran, S., Kracher, A., Straszheim, W., Yan, J.Q., Mun, E., and Canfield, P.C. (2011). Physical and magnetic properties of Ba(Fe1\u2212xMnx)2As2 single crystals. Phys. Rev. B, 84."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"R3884","DOI":"10.1103\/PhysRevB.52.R3884","article-title":"Effect of Zn doping on charge transport in YBa2Cu3O7-\u03b4","volume":"52","author":"Mizuhashi","year":"1995","journal-title":"Phys. Rev. B"},{"key":"ref_28","unstructured":"Analytis, J.G., Chu, J.-H., Erickson, S., Kucharczyk, C., Serafin, A., Carrington, A., Cox, C., Kauzlarich, S.M., Hope, H., and Fisher, I.R. Bulk superconductivity and disorder in single crystals of LaFePO."},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Sato, M., Kobayashi, Y., Lee, S.C., Takahashi, H., Satomi, E., and Miura, Y. (2010). Studies of Effects of Impurity Doping and NMR Measurements of La 1111 and\/or Nd 1111 Fe-Pnictide Superconductors. J. Phys. Soc. Jpn., 79.","DOI":"10.1143\/JPSJ.79.014710"},{"key":"ref_30","unstructured":"Satomi, E., Lee, S.C., Kobayashi, Y., and Sato, M. (2010). Superconducting Transition Temperatures and Transport Properties of LaFe1-yRuyAsO0.89F0.11 and LaFeAsO0.89-xF0.11+x. J. Phys. Soc. Jpn., 79."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Kawamata, T., Satomi, E., Kobayashi, Y., Itoh, M., and Sato, M. (2011). Study of Ni-Doping Effect of Specific Heat and Transport Properties for LaFe1-yNiyAsO0.89F0.11. J. Phys. Soc. Jpn., 80.","DOI":"10.1143\/JPSJ.80.084720"},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Guo, Y.F., Shi, Y.G., Yu, S., Belik, A.A., Matsushita, Y., Tanaka, M., Katsuya, Y., Kobayashi, K., Nowik, I., and Felner, I. (2010). Large decrease in the critical temperature of superconducting LaFeAsO0.85 compounds doped with 3% atomic weight of nonmagnetic Zn impurities. Phys. Rev. B, 82.","DOI":"10.1103\/PhysRevB.82.054506"},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Miyasaka, S., Takemori, A., Kobayashi, T., Suzuki, S., Saijo, S., and Tajima, S. (2013). Two Fermi Surface States and Two Tc-Rising Mechanisms Revealed by Transport Properties in RFeP1-xAsxO0.9F0.1 (R = La, Pr, and Nd). J. Phys. Soc. Jpn., 82.","DOI":"10.7566\/JPSJ.82.124706"},{"key":"ref_34","unstructured":"Lai, T., Takemori, A., Miyasaka, S., Engetsu, F., Mukuda, H., and Tajima, S. (2014). Evolution of the phase diagram of LaFeP1\u2212xAsxO1\u2212yFy (y = 0\u20130.1). Phys. Rev. B, 90."}],"container-title":["Symmetry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2073-8994\/8\/8\/80\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,5]],"date-time":"2024-06-05T15:21:39Z","timestamp":1717600899000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2073-8994\/8\/8\/80"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2016,8,17]]},"references-count":34,"journal-issue":{"issue":"8","published-online":{"date-parts":[[2016,8]]}},"alternative-id":["sym8080080"],"URL":"https:\/\/doi.org\/10.3390\/sym8080080","relation":{},"ISSN":["2073-8994"],"issn-type":[{"value":"2073-8994","type":"electronic"}],"subject":[],"published":{"date-parts":[[2016,8,17]]}}}