{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,18]],"date-time":"2025-01-18T05:32:01Z","timestamp":1737178321500,"version":"3.33.0"},"reference-count":28,"publisher":"MDPI AG","issue":"2","license":[{"start":{"date-parts":[[2023,2,3]],"date-time":"2023-02-03T00:00:00Z","timestamp":1675382400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Research Grant for Faculty (IoE Scheme)","award":["Dev. Scheme No. 6031"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Symmetry"],"abstract":"Integral inequalities concerned with convexity have many applications in several fields of mathematics in which symmetry plays an important role. In the theory of convexity, there exist strong connections between convexity and symmetry. If we are working on one of the concepts, then it can be applied to the other of them. In this paper, we establish some novel generalizations of Ostrowski type inequalities for exponentially s-preinvex and s-preinvex functions on time scale by using H\u00f6lder inequality and Montgomery Identity. We also obtain applications to some special means. These results are motivated by the symmetric results obtained in the recent article by Abbasi and Anwar in 2022 on Ostrowski type inequalities for exponentially s-convex functions and s-convex functions on time scale. Moreover, we discuss several special cases of the results obtained in this paper.<\/jats:p>","DOI":"10.3390\/sym15020410","type":"journal-article","created":{"date-parts":[[2023,2,6]],"date-time":"2023-02-06T09:08:07Z","timestamp":1675674487000},"page":"410","source":"Crossref","is-referenced-by-count":2,"title":["Ostrowski Type Inequalities via Some Exponentially s-Preinvex Functions on Time Scales with Applications"],"prefix":"10.3390","volume":"15","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-0014-2095","authenticated-orcid":false,"given":"Kin Keung","family":"Lai","sequence":"first","affiliation":[{"name":"International Business School, Shaanxi Normal University, Xi\u2019an 710119, China"}]},{"given":"Shashi Kant","family":"Mishra","sequence":"additional","affiliation":[{"name":"Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India"}]},{"given":"Vandana","family":"Singh","sequence":"additional","affiliation":[{"name":"Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi 221005, India"}]}],"member":"1968","published-online":{"date-parts":[[2023,2,3]]},"reference":[{"key":"ref_1","unstructured":"Hilger, S. (1988). Ein ma\u00dfKettenkalk\u00fcl mit Anwendung auf Zentrumsmannigfaltigkeiten. [Doctoral Dissertation, University W\u00fcrzburg]."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"561","DOI":"10.1006\/jmaa.2000.6992","article-title":"Hamiltonian systems on time scales","volume":"250","author":"Ahlbrandt","year":"2000","journal-title":"J. Math. Anal. Appl."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Bohner;, M., and Peterson,, A. (2001). Dynamic Equations on Time Scales: An Introduction with Applications, Springer Science Business Media.","DOI":"10.1007\/978-1-4612-0201-1"},{"key":"ref_4","first-page":"8","article-title":"Ostrowski inequalities on time scales","volume":"9","author":"Bohner","year":"2008","journal-title":"J. Inequal. Pure Appl. Math."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"718","DOI":"10.1016\/j.mcm.2005.08.014","article-title":"An application of time scales to economics","volume":"43","author":"Atici","year":"2001","journal-title":"Math. Comput. Model."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Seiffertt, J., and Wunsch, D.C. (2008, January 1\u20138). A quantum calculus formulation of dynamic programming and ordered derivatives. Proceedings of the IEEE International Joint Conference on Neural Networks (IEEE World Congress on Computational Intelligence), Hong Kong, China.","DOI":"10.1109\/IJCNN.2008.4634327"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"419","DOI":"10.1016\/j.jmaa.2013.04.075","article-title":"The Kalman filter for linear systems on time scales","volume":"406","author":"Bohner","year":"2013","journal-title":"J. Math. Anal. Appl."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.neunet.2019.08.010","article-title":"Adaptive resonance theory in the time scales calculus","volume":"120","author":"Seiffertt","year":"2019","journal-title":"Neural Netw."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"287927","DOI":"10.1155\/2008\/287947","article-title":"Hermite-Hadamard inequality on time scales","volume":"2008","author":"Dinu","year":"2008","journal-title":"J. Inequal. Appl."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"975","DOI":"10.7153\/jmi-2022-16-66","article-title":"Hermit\u2013Hadamard type integral inequalities for the class of strongly convex functions on time scales","volume":"16","author":"Lai","year":"2022","journal-title":"J. Math. Inequal."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1007\/BF01214290","article-title":"\u00dcber die Absolutabweichung einer differentiierbaren Funktion von ihrem Integralmittelwert","volume":"10","author":"Ostrowski","year":"1937","journal-title":"Comment. Math. Helv."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Mitrinovic, D.S., Pecaric, J.E., and Fink, A.M. (1991). Inequalities Involving Functions and Their Integrals and Derivatives, Springer. [1st ed.].","DOI":"10.1007\/978-94-011-3562-7"},{"key":"ref_13","first-page":"373","article-title":"Ostrowski type inequalities for functions whose derivatives are preinvex","volume":"40","year":"2014","journal-title":"Bull. Iranian Math. Soc."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"137","DOI":"10.1016\/S0096-3003(02)00657-4","article-title":"Inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula","volume":"147","author":"Kirmaci","year":"2004","journal-title":"Appl. Math. Comput."},{"key":"ref_15","first-page":"275","article-title":"Some new Ostrowski\u2019s inequalities for functions whose nth derivatives are logarithmically convex","volume":"32","author":"Meftah","year":"2018","journal-title":"Ann. Math. Sil"},{"key":"ref_16","first-page":"67","article-title":"New inequalities of Ostrowski\u2019s type for s-convex functions in the second sense with applications","volume":"27","author":"Set","year":"2012","journal-title":"Facta Univ. Ser. Math. Inform."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Basci, Y., and Baleanu, D. (2019). Ostrowski type inequalities involving \u03c8-hilfer fractional integrals. Mathematics, 7.","DOI":"10.3390\/math7090770"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"123","DOI":"10.1186\/s13660-020-02381-1","article-title":"Fractional Ostrowski type inequalities for bounded functions","volume":"2020","author":"Erden","year":"2020","journal-title":"J. Inequal. Appl."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"187","DOI":"10.1007\/s10013-014-0056-4","article-title":"Note on the Ostrowski type inequalities for fractional integrals","volume":"42","author":"Sarikaya","year":"2014","journal-title":"Vietnam. J. Math."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Hyder, A.A., Almoneef, A.A., Budak, H., and Barakat, M.A. (2022). On New Fractional Version of Generalized Hermite-Hadamard Inequalities. Mathematics, 10.","DOI":"10.3390\/math10183337"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"545","DOI":"10.1016\/0022-247X(81)90123-2","article-title":"On sufficiency of the Kuhn-Tucker conditions","volume":"80","author":"Hanson","year":"1981","journal-title":"J. Math. Anal. Appl."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1017\/S0334270000005142","article-title":"What is invexity?","volume":"28","author":"Mond","year":"1986","journal-title":"J. Aust. Math. Soc. Ser. B Appl. Math."},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Lai, K.K., Bisht, J., Sharma, N., and Mishra, S.K. (2022). Hermite-Hadamard-type fractional inclusions for interval-valued preinvex functions. Mathematics, 10.","DOI":"10.3390\/math10020264"},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Mishra, S.K., and Giorgi, G. (2008). Invexity and Optimization, Springer Science & Business Media.","DOI":"10.1007\/978-3-540-78562-0"},{"key":"ref_25","first-page":"3333","article-title":"Hermite-Hadamard type inequality for \u03c8-Riemann-Liouville fractional integrals via preinvex functions","volume":"13","author":"Sharma","year":"2022","journal-title":"Int. J. Nonlinear Anal. Appl."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"4700","DOI":"10.3934\/math.2022261","article-title":"Ostrowski type inequalities for exponentially s-convex functions on time scale","volume":"7","author":"Abbasi","year":"2022","journal-title":"AIMS Math."},{"key":"ref_27","first-page":"151","article-title":"Simpson type integral inequalities in which the power of the absolute value of the first derivative of the integrand is s-preinvex","volume":"28","author":"Wang","year":"2013","journal-title":"Facta Univ. Ser. Math. Inform."},{"key":"ref_28","first-page":"861","article-title":"Some new generalizations for exponentially (s; m)-preinvex functions considering generalized fractional integral operators","volume":"53","author":"Safdar","year":"2022","journal-title":"Punjab Univ. J. Math."}],"container-title":["Symmetry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2073-8994\/15\/2\/410\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,18]],"date-time":"2025-01-18T00:34:05Z","timestamp":1737160445000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2073-8994\/15\/2\/410"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,3]]},"references-count":28,"journal-issue":{"issue":"2","published-online":{"date-parts":[[2023,2]]}},"alternative-id":["sym15020410"],"URL":"https:\/\/doi.org\/10.3390\/sym15020410","relation":{},"ISSN":["2073-8994"],"issn-type":[{"type":"electronic","value":"2073-8994"}],"subject":[],"published":{"date-parts":[[2023,2,3]]}}}