{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,15]],"date-time":"2025-01-15T05:34:35Z","timestamp":1736919275284,"version":"3.33.0"},"reference-count":28,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2022,6,29]],"date-time":"2022-06-29T00:00:00Z","timestamp":1656460800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Ph.D. Scientific Research Foundation of Liaocheng University","award":["321052022"]},{"DOI":"10.13039\/501100007129","name":"Natural Science Foundation of Shandong Province","doi-asserted-by":"crossref","award":["ZR2020MA026"],"id":[{"id":"10.13039\/501100007129","id-type":"DOI","asserted-by":"crossref"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Symmetry"],"abstract":"This paper proposes a new interest rate model by using uncertain mean-reverting differential equation. Based on the model, the pricing formulas of the zero-coupon bond, the interest rate ceiling and interest rate floor are derived respectively according to Yao-Chen formula. The symmetry appears in mathematical formulations of the interest rate ceiling and interest rate floor pricing formula. Furthermore, the model is applied to depict Hong Kong interbank offered rate (Hibor). Finally the parameter estimation by the method of moments and hypothesis test is completed.<\/jats:p>","DOI":"10.3390\/sym14071344","type":"journal-article","created":{"date-parts":[[2022,6,30]],"date-time":"2022-06-30T05:38:48Z","timestamp":1656567528000},"page":"1344","source":"Crossref","is-referenced-by-count":1,"title":["A New Uncertain Interest Rate Model with Application to Hibor"],"prefix":"10.3390","volume":"14","author":[{"ORCID":"https:\/\/orcid.org\/0000-0003-3976-3577","authenticated-orcid":false,"given":"Yang","family":"Liu","sequence":"first","affiliation":[{"name":"School of Business, Liaocheng University, Liaocheng 252059, China"}]},{"given":"Huiting","family":"Jing","sequence":"additional","affiliation":[{"name":"School of Economics and Management, Tongji University, Shanghai 200092, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8218-0305","authenticated-orcid":false,"given":"Tingqing","family":"Ye","sequence":"additional","affiliation":[{"name":"School of Reliability and Systems Engineering, Beihang University, Beijing 100191, China"}]}],"member":"1968","published-online":{"date-parts":[[2022,6,29]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"141","DOI":"10.2307\/3003143","article-title":"Theory of rational option pricing","volume":"4","author":"Merton","year":"1973","journal-title":"Bell J. Econ. Manag. Sci."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1011","DOI":"10.1111\/j.1540-6261.1986.tb02528.x","article-title":"Term structure movements and pricing interest rate contingent claims","volume":"5","author":"Ho","year":"1986","journal-title":"J. Financ."},{"key":"ref_3","first-page":"177","article-title":"An equilibrium characterization of the term structure","volume":"12","author":"Vasicek","year":"1977","journal-title":"J. Financ. Quant. Anal."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"363","DOI":"10.2307\/1911241","article-title":"An intertemporal general equilibrium model of asset prices","volume":"53","author":"Cox","year":"1985","journal-title":"Econometrica"},{"key":"ref_5","unstructured":"Liu, B. (2007). Uncertainty Theory, Springer. [2nd ed.]."},{"key":"ref_6","first-page":"3","article-title":"Fuzzy process, hybrid process and uncertain process","volume":"1","author":"Liu","year":"2008","journal-title":"J. Uncertain Syst."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1007\/s10700-010-9073-2","article-title":"Existence and uniqueness theorem for uncertain differential equations","volume":"9","author":"Chen","year":"2010","journal-title":"Fuzzy Optim. Decis. Mak."},{"key":"ref_8","first-page":"223","article-title":"Existence and uniqueness theorem on uncertain differential equations with local Lipschitz condition","volume":"6","author":"Gao","year":"2012","journal-title":"J. Uncertain Syst."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"825","DOI":"10.3233\/IFS-120688","article-title":"A numerical method for solving uncertain differential equations","volume":"25","author":"Yao","year":"2013","journal-title":"J. Intell. Fuzzy Syst."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s10700-019-09310-y","article-title":"Parameter estimation in uncertain differential equations","volume":"19","author":"Yao","year":"2020","journal-title":"Fuzzy Optimation Decis. Mak."},{"key":"ref_11","first-page":"125724","article-title":"Generalized moment estimation for uncertain differential equations","volume":"392","author":"Liu","year":"2021","journal-title":"Appl. Math. Comput."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"2651","DOI":"10.1109\/TFUZZ.2019.2939984","article-title":"Least squares estimation in uncertain differential equations","volume":"28","author":"Sheng","year":"2020","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"2773","DOI":"10.1007\/s00500-022-06766-w","article-title":"Estimating unknown parameters in uncertain differential equation by maximum likelihood estimation","volume":"26","author":"Liu","year":"2022","journal-title":"Soft Comput."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"110026","DOI":"10.1016\/j.chaos.2020.110026","article-title":"Parameter estimation of uncertain differential equation with application to financial market","volume":"139","author":"Yang","year":"2020","journal-title":"Chaos Solitons Fractals"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"157","DOI":"10.1007\/s10700-021-09365-w","article-title":"Uncertain hypothesis test with application to uncertain regression analysis","volume":"21","author":"Ye","year":"2021","journal-title":"Fuzzy Optim. Decis. Mak."},{"key":"ref_16","first-page":"3","article-title":"Some research problems in uncertainty theory","volume":"3","author":"Liu","year":"2009","journal-title":"J. Uncertain Syst."},{"key":"ref_17","first-page":"32","article-title":"American option pricing formula for uncertain financial market","volume":"8","author":"Chen","year":"2011","journal-title":"Int. J. Oper. Res."},{"key":"ref_18","first-page":"53","article-title":"A new option pricing model for stocks in uncertainty markets","volume":"12","author":"Peng","year":"2013","journal-title":"Int. J. Oper. Res."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"111","DOI":"10.1007\/s10700-012-9141-x","article-title":"Uncertain stock model with periodic dividends","volume":"12","author":"Chen","year":"2013","journal-title":"Fuzzy Optim. Decis. Mak."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"421","DOI":"10.1142\/S0218488512500213","article-title":"A stock model with jumps for uncertain markets","volume":"20","author":"Yu","year":"2012","journal-title":"Int. J. Uncertain. Fuzziness Knowl.-Based Syst."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1007\/s10845-014-1017-1","article-title":"Option pricing formulas for uncertain financial market based on the exponential Ornstein-Uhlenbeck model","volume":"28","author":"Dai","year":"2017","journal-title":"J. Intell. Manuf."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"597","DOI":"10.1007\/s00500-012-0927-0","article-title":"Uncertain term structure model of interest rate","volume":"17","author":"Chen","year":"2013","journal-title":"Soft Comput."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1007\/s10700-015-9223-7","article-title":"Valuation of interest rate ceiling and floor in uncertain financial market","volume":"15","author":"Zhang","year":"2016","journal-title":"Fuzzy Optim. Decis. Mak."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"775","DOI":"10.1007\/s00500-014-1301-1","article-title":"An interest rate model in uncertain environment","volume":"19","author":"Jiao","year":"2015","journal-title":"Soft Comput."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1007\/s00500-016-2337-1","article-title":"Interest rate model in uncertain environment based on exponential Ornstein-Uhlenbeck equation","volume":"22","author":"Sun","year":"2018","journal-title":"Soft Comput."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"3359","DOI":"10.1002\/mma.3335","article-title":"Uncertain fractional differential equations and an interest rate model","volume":"38","author":"Zhu","year":"2015","journal-title":"Math. Methods Appl. Sci."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"907","DOI":"10.2307\/2330567","article-title":"Analyzing convertible bonds","volume":"15","author":"Brennan","year":"1980","journal-title":"J. Financ. Quant. Anal."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Yao, K. (2016). Uncertain Differential Equations, Springer.","DOI":"10.1007\/978-3-662-52729-0"}],"container-title":["Symmetry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2073-8994\/14\/7\/1344\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,15]],"date-time":"2025-01-15T00:49:56Z","timestamp":1736902196000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2073-8994\/14\/7\/1344"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,6,29]]},"references-count":28,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2022,7]]}},"alternative-id":["sym14071344"],"URL":"https:\/\/doi.org\/10.3390\/sym14071344","relation":{},"ISSN":["2073-8994"],"issn-type":[{"type":"electronic","value":"2073-8994"}],"subject":[],"published":{"date-parts":[[2022,6,29]]}}}