{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,11]],"date-time":"2024-08-11T04:28:42Z","timestamp":1723350522727},"reference-count":51,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2021,7,6]],"date-time":"2021-07-06T00:00:00Z","timestamp":1625529600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003443","name":"Ministry of Education and Science of the Russian Federation","doi-asserted-by":"publisher","award":["FEWM-2020-0042"],"id":[{"id":"10.13039\/501100003443","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Symmetry"],"abstract":"The quantity of network attacks and the harm from them is constantly increasing, so the detection of these attacks is an urgent task in the information security field. In this paper, we investigate an approach to building intrusion detection systems using a classifier based on fuzzy rules. The process of creating a fuzzy classifier based on a given set of input and output data can be presented as a solution to the problems of clustering, informative features selection, and the parameters of the rule antecedents optimization. To solve these problems, the whale optimization algorithm is used. The performance of algorithms for constructing a fuzzy classifier based on this metaheuristic is estimated using the KDD Cup 1999 intrusion detection dataset. On average, the resulting classifiers have a type I error of 0.92% and a type II error of 1.07%. The obtained results are also compared with the results of other classifiers. The comparison shows the competitiveness of the proposed method.<\/jats:p>","DOI":"10.3390\/sym13071211","type":"journal-article","created":{"date-parts":[[2021,7,7]],"date-time":"2021-07-07T03:53:51Z","timestamp":1625630031000},"page":"1211","source":"Crossref","is-referenced-by-count":10,"title":["Building a Fuzzy Classifier Based on Whale Optimization Algorithm to Detect Network Intrusions"],"prefix":"10.3390","volume":"13","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-0505-211X","authenticated-orcid":false,"given":"Nikolay","family":"Koryshev","sequence":"first","affiliation":[{"name":"Faculty of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9355-7638","authenticated-orcid":false,"given":"Ilya","family":"Hodashinsky","sequence":"additional","affiliation":[{"name":"Faculty of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]},{"given":"Alexander","family":"Shelupanov","sequence":"additional","affiliation":[{"name":"Faculty of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]}],"member":"1968","published-online":{"date-parts":[[2021,7,6]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"2735","DOI":"10.1007\/s10489-018-01408-x","article-title":"A new hybrid approach for intrusion detection using machine learning methods","volume":"49","author":"Cavusoglu","year":"2019","journal-title":"Appl. Intell."},{"key":"ref_2","unstructured":"Zamani, M., and Movahedi, M. (arXiv, 2013). Machine Learning Techniques for Intrusion Detection, arXiv."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"193","DOI":"10.1016\/j.eswa.2014.08.002","article-title":"On the combination of genetic fuzzy systems and pairwise learning for improving detection rates on intrusion detection systems","volume":"42","author":"Elhag","year":"2015","journal-title":"Expert Syst. Appl."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"907","DOI":"10.1007\/s00542-016-2873-8","article-title":"Fuzzy min\u2013max neural network and particle swarm optimization based intrusion detection system","volume":"23","author":"Azad","year":"2017","journal-title":"Microsyst. Technol."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Bardamova, M., Konev, A., Hodashinsky, I., and Shelupanov, A. (2019). Application of the Gravitational Search Algorithm for Constructing Fuzzy Classifiers of Imbalanced Data. Symmetry, 11.","DOI":"10.3390\/sym11121458"},{"key":"ref_6","first-page":"99","article-title":"Using machine learning to build a classification model for iot networks to detect attack signatures","volume":"12","author":"Alawairdhi","year":"2020","journal-title":"Int. J. Comput. Netw. Commun. (IJCNC)"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"178","DOI":"10.1016\/j.asoc.2014.01.028","article-title":"A novel hybrid KPCA and SVM with GA model for intrusion detection","volume":"18","author":"Kuang","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"ref_8","first-page":"15","article-title":"Intrusion Detection in Computer Networks based on Machine Learning Algorithms","volume":"8","author":"Osareh","year":"2008","journal-title":"Int. J. Comput. Sci. Netw. Secur. (IJCSNS)"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"3235","DOI":"10.1007\/s10489-019-01436-1","article-title":"An intelligent intrusion detection system","volume":"49","author":"Kaja","year":"2019","journal-title":"Appl. Intell."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"9427","DOI":"10.1007\/s00521-019-04453-w","article-title":"A whale optimization algorithm-trained artificial neural network for smart grid cyber intrusion detection","volume":"32","author":"Haghnegahdar","year":"2020","journal-title":"Neural Comput. Appl."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"616","DOI":"10.1134\/S1064230717040116","article-title":"Comparative analysis of differential evolution methods to optimize parameters of fuzzy classifiers","volume":"56","author":"Mekh","year":"2017","journal-title":"J. Comput. Syst. Sci. Int."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"857","DOI":"10.1109\/TFUZZ.2011.2147794","article-title":"A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning","volume":"19","author":"Alcala","year":"2011","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"470","DOI":"10.1016\/j.asoc.2014.07.019","article-title":"A multi-objective evolutionary method for learning granularities based on fuzzy discretization to improve the accuracy-complexity trade-off of fuzzy rule-based classification systems: D-MOFARC algorithm","volume":"24","author":"Fazzolari","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"1321","DOI":"10.1007\/s00500-017-2856-4","article-title":"A multi-objective evolutionary fuzzy system to obtain a broad and accurate set of solutions in intrusion detection systems","volume":"23","author":"Elhag","year":"2019","journal-title":"Soft Comput."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Bardamova, M., Konev, A., Hodashinsky, I., and Shelupanov, A. (2018). A Fuzzy Classifier with Feature Selection Based on the Gravitational Search Algorithm. Symmetry, 10.","DOI":"10.3390\/sym10110609"},{"key":"ref_16","first-page":"254","article-title":"Gravitational search for designing a fuzzy rule-based classifiers for handwritten signature verification","volume":"15","author":"Bardamova","year":"2019","journal-title":"J. Commun. Softw. Syst."},{"key":"ref_17","first-page":"85","article-title":"Constructing a fuzzy network intrusion classifier based on differential evolution and harmonic search","volume":"10","author":"Hodashinsky","year":"2018","journal-title":"Int. J. Comput. Netw. Commun. (IJCNC)"},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Maimon, O., and Rokach, L. (2008). Swarm intelligence algorithms for data clustering. Soft Computing for Knowledge Discovery and Data Mining, Springer. [1st ed.].","DOI":"10.1007\/978-0-387-69935-6"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Li, Y., Shang, Y., and Yang, Y. (2017). Clustering coefficients of large networks. Inf. Sci., 350\u2013358.","DOI":"10.1016\/j.ins.2016.12.027"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1456","DOI":"10.1002\/mma.6844","article-title":"Resilient group consensus in heterogeneously robust networks with hybrid dynamics","volume":"44","author":"Shang","year":"2021","journal-title":"Math. Methods Appl. Sci."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"36","DOI":"10.1016\/j.swevo.2015.10.003","article-title":"Analysis of particle swarm optimization based hierarchical data clustering approaches","volume":"25","author":"Shafiq","year":"2015","journal-title":"Swarm Evol. Comput."},{"key":"ref_22","unstructured":"Xu, R., and Wunsch, D.C. (2009). Clustering, John Wiley & Sons, Inc.. [1st ed.]."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"624","DOI":"10.1007\/s10489-017-0917-0","article-title":"Fuzzy C-Means Clustering and Particle Swarm Optimization based scheme for Common Service Center location allocation","volume":"47","author":"Gupta","year":"2017","journal-title":"Appl. Intell."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.swevo.2013.11.003","article-title":"A survey on nature inspired metaheuristic algorithms for partitional clustering","volume":"16","author":"Jagannath","year":"2014","journal-title":"Swarm Evol. Comput."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"103","DOI":"10.1016\/j.knosys.2014.06.018","article-title":"Autonomic intrusion detection: Adaptively detecting anomalies over unlabeled audit data streams in computer networks","volume":"70","author":"Wang","year":"2014","journal-title":"Knowl. Based Syst."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"824","DOI":"10.1007\/978-3-642-04274-4_85","article-title":"Combining Feature Selection and Local Modelling in the KDD Cup 99 Dataset","volume":"Volume 5768","author":"Alippi","year":"2009","journal-title":"Artificial Neural Networks\u2014ICANN 2009"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"491","DOI":"10.1109\/TKDE.2005.66","article-title":"Toward Integrating Feature Selection Algorithms for Classification and Clustering","volume":"17","author":"Liu","year":"2005","journal-title":"IEEE Trans. Knowl. Data Eng."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/S0004-3702(97)00043-X","article-title":"Wrappers for feature subset selection","volume":"97","author":"Kohavi","year":"1997","journal-title":"Artif. Intell."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"56847","DOI":"10.1109\/ACCESS.2020.2978035","article-title":"A Novel Feature Selection Method Using Whale Optimization Algorithm and Genetic Operators for Intrusion Detection System in Wireless Mesh Network","volume":"8","author":"Vijayanand","year":"2020","journal-title":"IEEE Access"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"51","DOI":"10.1016\/j.advengsoft.2016.01.008","article-title":"The Whale Optimization Algorithm","volume":"95","author":"Mirjalili","year":"2016","journal-title":"Adv. Eng. Softw."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"6035","DOI":"10.1007\/s00500-018-3076-2","article-title":"Elephant search algorithm applied to data clustering","volume":"22","author":"Deb","year":"2018","journal-title":"Soft Comput."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"129","DOI":"10.1109\/TIT.1982.1056489","article-title":"Least Squares Quantization in PCM","volume":"28","author":"Lloyd","year":"1982","journal-title":"IEEE Trans. Inf. Theory"},{"key":"ref_33","first-page":"281","article-title":"Some methods for classification and analysis of multivariate observations","volume":"Volume 1","author":"Neyman","year":"1967","journal-title":"Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"45","DOI":"10.1007\/s11047-016-9542-9","article-title":"A population-based clustering technique using particle swarm optimization and k-means","volume":"16","author":"Niu","year":"2017","journal-title":"Nat. Comput."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"218","DOI":"10.1109\/TSMCA.2007.909595","article-title":"Automatic clustering using an improved differential evolution algorithm","volume":"38","author":"Das","year":"2008","journal-title":"IEEE Trans. Syst. Man Cybern."},{"key":"ref_36","unstructured":"Chen, C.Y., and Fun, Y. (2004, January 21\u201323). Particle swarm optimization algorithm and its application to clustering analysis. Proceedings of the 2004 IEEE International Conference on Networking, Sensing & Control, Taipei, Taiwan."},{"key":"ref_37","unstructured":"Merwe, D.W., and Engelbrecht, A.P. (2003, January 8\u201312). Data clustering using particle swarm optimization. Proceedings of the 2003 Congress on Evolutionary Computation, 2003. CEC\u201903, Canberra, ACT, Australia."},{"key":"ref_38","first-page":"494","article-title":"Development of An External Cluster Validity Index using Probabilistic Approach and Min-max Distance","volume":"6","author":"Alok","year":"2014","journal-title":"Int. J. Comput. Inf. Syst. Ind. Manag. Appl."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"1","DOI":"10.18637\/jss.v061.i06","article-title":"NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set","volume":"61","author":"Charrad","year":"2014","journal-title":"J. Stat. Softw."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.patcog.2012.07.021","article-title":"An extensive comparative study of cluster validity indices","volume":"46","author":"Arbelaitz","year":"2013","journal-title":"Pattern Recognit."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"10303","DOI":"10.1007\/s00500-018-3582-2","article-title":"An unsupervised and robust validity index for clustering analysis","volume":"23","author":"Yaru","year":"2019","journal-title":"Soft Comput."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"441","DOI":"10.1016\/j.asoc.2017.11.006","article-title":"Whale optimization approaches for wrapper feature selection","volume":"62","author":"Mafarja","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"79","DOI":"10.1007\/978-981-10-8863-6_9","article-title":"S-shaped Binary Whale Optimization Algorithm for Feature Selection","volume":"727","author":"Hussien","year":"2019","journal-title":"Adv. Intell. Syst. Comput."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Hussien, A.G., Houssein, E.H., and Hassanien, A.E. (2017, January 5\u20137). A binary whale optimization algorithm with hyperbolic tangent fitness function for feature selection. Proceedings of the 2017 Eighth International Conference on Intelligent Computing and Information Systems (ICICIS), Cairo, Egypt.","DOI":"10.1109\/INTELCIS.2017.8260031"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.swevo.2012.09.002","article-title":"S-shaped versus V-shaped transfer functions for binary particle swarm optimization","volume":"9","author":"Mirjalili","year":"2013","journal-title":"Swarm Evol. Comput."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"625","DOI":"10.1007\/s00521-014-1743-5","article-title":"How important is a transfer function in discrete heuristic algorithms","volume":"26","author":"Saremi","year":"2014","journal-title":"Neural Comput. Appl."},{"key":"ref_47","first-page":"3098","article-title":"Genetic Programming Approach for Multi-category Pattern Classification Applied to Network Intrusions Detection","volume":"1","author":"Faraoun","year":"2007","journal-title":"Int. J. Comput. Electr. Autom. Control. Inf. Eng."},{"key":"ref_48","first-page":"31","article-title":"Misuse Detection Using Hybrid of Association Rule Mining and Connectionist Modeling","volume":"7","author":"Sheikhan","year":"2009","journal-title":"World Appl. Sci. J."},{"key":"ref_49","unstructured":"(2021, June 03). UNSW Sydney. Available online: https:\/\/research.unsw.edu.au\/projects\/unsw-nb15-dataset."},{"key":"ref_50","unstructured":"University of New Brunswick (2021, June 03). Canadian Institute for Cybersecurity. Available online: https:\/\/www.unb.ca\/cic\/datasets\/ids.html."},{"key":"ref_51","unstructured":"(2021, June 03). GitHub. Available online: https:\/\/github.com\/verazuo\/a-labelled-version-of-the-ADFA-LD-dataset."}],"container-title":["Symmetry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2073-8994\/13\/7\/1211\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,15]],"date-time":"2024-07-15T03:16:13Z","timestamp":1721013373000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2073-8994\/13\/7\/1211"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2021,7,6]]},"references-count":51,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2021,7]]}},"alternative-id":["sym13071211"],"URL":"https:\/\/doi.org\/10.3390\/sym13071211","relation":{},"ISSN":["2073-8994"],"issn-type":[{"value":"2073-8994","type":"electronic"}],"subject":[],"published":{"date-parts":[[2021,7,6]]}}}