{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,16]],"date-time":"2024-08-16T09:45:47Z","timestamp":1723801547544},"reference-count":45,"publisher":"MDPI AG","issue":"11","license":[{"start":{"date-parts":[[2018,11,7]],"date-time":"2018-11-07T00:00:00Z","timestamp":1541548800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003443","name":"Ministry of Education and Science of the Russian Federation","doi-asserted-by":"publisher","award":["2.8172.2017\/8.9"],"id":[{"id":"10.13039\/501100003443","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Symmetry"],"abstract":"This paper concerns several important topics of the Symmetry journal, namely, pattern recognition, computer-aided design, diversity and similarity. We also take advantage of the symmetric and asymmetric structure of a transfer function, which is responsible to map a continuous search space to a binary search space. A new method for design of a fuzzy-rule-based classifier using metaheuristics called Gravitational Search Algorithm (GSA) is discussed. The paper identifies three basic stages of the classifier construction: feature selection, creating of a fuzzy rule base and optimization of the antecedent parameters of rules. At the first stage, several feature subsets are obtained by using the wrapper scheme on the basis of the binary GSA. Creating fuzzy rules is a serious challenge in designing the fuzzy-rule-based classifier in the presence of high-dimensional data. The classifier structure is formed by the rule base generation algorithm by using minimum and maximum feature values. The optimal fuzzy-rule-based parameters are extracted from the training data using the continuous GSA. The classifier performance is tested on real-world KEEL (Knowledge Extraction based on Evolutionary Learning) datasets. The results demonstrate that highly accurate classifiers could be constructed with relatively few fuzzy rules and features.<\/jats:p>","DOI":"10.3390\/sym10110609","type":"journal-article","created":{"date-parts":[[2018,11,7]],"date-time":"2018-11-07T15:32:07Z","timestamp":1541604727000},"page":"609","source":"Crossref","is-referenced-by-count":19,"title":["A Fuzzy Classifier with Feature Selection Based on the Gravitational Search Algorithm"],"prefix":"10.3390","volume":"10","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-0567-590X","authenticated-orcid":false,"given":"Marina","family":"Bardamova","sequence":"first","affiliation":[{"name":"Department of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3222-9956","authenticated-orcid":false,"given":"Anton","family":"Konev","sequence":"additional","affiliation":[{"name":"Department of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9355-7638","authenticated-orcid":false,"given":"Ilya","family":"Hodashinsky","sequence":"additional","affiliation":[{"name":"Department of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]},{"given":"Alexander","family":"Shelupanov","sequence":"additional","affiliation":[{"name":"Department of Security, Tomsk State University of Control Systems and Radioelectronics, 40 Lenina Prospect, 634050 Tomsk, Russia"}]}],"member":"1968","published-online":{"date-parts":[[2018,11,7]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Aggarwal, C.C. (2015). An Introduction to data classification. Data Classification: Algorithms and Applications, CRC Press.","DOI":"10.1007\/978-3-319-14142-8_10"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"156","DOI":"10.1016\/j.patcog.2018.03.011","article-title":"Fuzzy classifiers with information granules in feature space and logic-based computing","volume":"80","author":"Hu","year":"2018","journal-title":"Pattern Recognit."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Evsutin, O., Shelupanov, A., Meshcheryakov, R., Bondarenko, D., and Rashchupkina, A. (2016). The algorithm of continuous optimization based on the modified cellular automaton. Symmetry, 8.","DOI":"10.3390\/sym8090084"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"81","DOI":"10.1016\/j.eswa.2017.06.032","article-title":"A new hybrid feature selection approach using feature association map for supervised and unsupervised classification","volume":"88","author":"Das","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Bolon-Canedo, V., Sanchez-Marono, N., and Alonso-Betanzos, A. (2015). Feature Selection for High-Dimensional Data, Springer.","DOI":"10.1007\/978-3-319-21858-8"},{"key":"ref_6","unstructured":"Lavygina, A., and Hodashinsky, I. (2011, January 24\u201326). Hybrid algorithm for fuzzy model parameter estimation based on genetic algorithm and derivative based methods. Proceedings of the International Conference on Evolutionary Computation Theory and Applications (FCTA-2011), Paris, France."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"1341","DOI":"10.1162\/neco.1996.8.7.1341","article-title":"The existence of a priori distinctions between learning algorithms","volume":"8","author":"Wolpert","year":"1996","journal-title":"Neural Comput."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"1391","DOI":"10.1162\/neco.1996.8.7.1391","article-title":"The lack of a priori distinctions between learning algorithms","volume":"8","author":"Wolpert","year":"1996","journal-title":"Neural Comput."},{"key":"ref_9","unstructured":"Duda, R.O., Hart, P.E., and Stork, D.G. (2001). Pattern Classification, John Wiley & Sons."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2232","DOI":"10.1016\/j.ins.2009.03.004","article-title":"GSA: A Gravitational Search Algorithm","volume":"179","author":"Rashedi","year":"2009","journal-title":"Inf. Sci."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"141","DOI":"10.1016\/j.swevo.2018.02.018","article-title":"A comprehensive survey on gravitational search algorithm","volume":"41","author":"Rashedi","year":"2018","journal-title":"Swarm Evolut. Comput."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"1103","DOI":"10.1007\/s12046-017-0674-0","article-title":"Adaptive switching gravitational search algorithm: An attempt to improve diversity of gravitational search algorithm through its iteration strategy","volume":"42","author":"Aziz","year":"2017","journal-title":"S\u0101dhan\u0101"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Pelusi, D., Mascella, R., and Tallini, L. (2018). A fuzzy Gravitational Search Algorithm to Design Optimal IIR Filters. Energies, 11.","DOI":"10.3390\/en11040736"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.eswa.2018.02.026","article-title":"Neural network and fuzzy system for the tuning of Gravitational Search Algorithm parameters","volume":"102","author":"Pelusi","year":"2018","journal-title":"Expert Syst. Appl."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Pelusi, D., Mascella, R., and Tallini, L. (2017). Revised gravitational search algorithms based on evolutionary-fuzzy systems. Algorithms, 10.","DOI":"10.3390\/a10020044"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"9106","DOI":"10.1016\/j.amc.2013.03.098","article-title":"Gravitational particle swarm","volume":"219","author":"Tsai","year":"2013","journal-title":"Appl. Math. Comput."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"505","DOI":"10.1016\/j.compeleceng.2017.06.001","article-title":"Improved gravitational search algorithm with crossover","volume":"66","author":"Yin","year":"2018","journal-title":"Comput. Electr. Eng."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"819","DOI":"10.1016\/j.asoc.2011.10.008","article-title":"A prototype classifier based on gravitational search algorithm","volume":"12","author":"Bahrololoum","year":"2012","journal-title":"Appl. Soft Comput."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"515","DOI":"10.1016\/j.eswa.2018.07.008","article-title":"A hybrid algorithm based on self-adaptive gravitational search algorithm and differential evolution","volume":"113","author":"Zhao","year":"2018","journal-title":"Expert Syst. Appl."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"334","DOI":"10.2991\/ijcis.2010.3.3.9","article-title":"Fuzzy Classifier Design using Modified Genetic Algorithm","volume":"3","author":"Kumar","year":"2010","journal-title":"Int. J. Comput. Intell. Syst."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1894","DOI":"10.1109\/TSMCB.2004.831160","article-title":"Evolutionary design of a fuzzy classifier from data","volume":"34","author":"Chang","year":"2004","journal-title":"IEEE Trans. Syst. Man. Cybern. B Cybern."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"29","DOI":"10.1007\/978-3-319-10960-2_2","article-title":"Fuzzy classification system design using PSO with dynamic parameter adaptation through fuzzy logic","volume":"574","author":"Olivas","year":"2015","journal-title":"Stud. Comput. Intell."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"2923","DOI":"10.1007\/s00500-015-1922-z","article-title":"Fuzzy rule weight modification with particle swarm optimization","volume":"20","author":"Chen","year":"2016","journal-title":"Soft Comput."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"012053","DOI":"10.1088\/1742-6596\/803\/1\/012053","article-title":"Tuning fuzzy systems parameters with chaotic particle swarm optimization","volume":"803","author":"Hodashinsky","year":"2017","journal-title":"J. Phys. Conf. Ser."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"520","DOI":"10.1016\/j.asoc.2006.11.001","article-title":"Identification of interpretable and accurate fuzzy classifiers and function estimators with hybrid methods","volume":"7","author":"Pulkkinen","year":"2007","journal-title":"Appl. Soft Comput."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"800","DOI":"10.1016\/j.asoc.2011.10.010","article-title":"hGA: Hybrid genetic algorithm in fuzzy rule-based classification systems for high-dimensional problems","volume":"12","author":"Aydogan","year":"2012","journal-title":"Appl. Soft Comput."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"616","DOI":"10.1134\/S1064230717040116","article-title":"Comparative analysis of differential evolution methods to optimize parameters of fuzzy classifiers","volume":"56","author":"Mekh","year":"2017","journal-title":"J. Comput. Syst. Sci. Int."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"857","DOI":"10.1109\/TFUZZ.2011.2147794","article-title":"A fuzzy association rule-based classification model for high-dimensional problems with genetic rule selection and lateral tuning","volume":"19","author":"Alcala","year":"2011","journal-title":"IEEE Trans. Fuzzy Syst."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"470","DOI":"10.1016\/j.asoc.2014.07.019","article-title":"A multi-objective evolutionary method for learning granularities based on fuzzy discretization to improve the accuracy-complexity trade-off of fuzzy rule-based classification systems: D-MOFARC algorithm","volume":"24","author":"Fazzolari","year":"2014","journal-title":"Appl. Soft Comput."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"6895","DOI":"10.1007\/s00500-016-2439-9","article-title":"Multistage feature selection approach for high-dimensional cancer data","volume":"21","author":"Alkuhlani","year":"2017","journal-title":"Soft Comput."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"273","DOI":"10.1016\/S0004-3702(97)00043-X","article-title":"Wrappers for feature subset selection","volume":"97","author":"Kohavi","year":"1997","journal-title":"Artif. Intell."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"131","DOI":"10.3233\/IDA-1997-1302","article-title":"Feature selection for classification","volume":"1","author":"Dash","year":"1997","journal-title":"Intell. Data Anal."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1007\/978-3-540-35488-8_7","article-title":"Information-theoretic methods","volume":"207","author":"Torkkola","year":"2006","journal-title":"Stud. Fuzz. Soft Comput."},{"key":"ref_34","first-page":"54","article-title":"Multi-level dimensionality reduction methods using feature selection and feature extraction","volume":"1","author":"Veerabhadrappa","year":"2010","journal-title":"Int. J. Artif. Intell. Appl."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"525","DOI":"10.1016\/j.patrec.2008.11.012","article-title":"Different Metaheuristic Strategies to Solve The Feature Selection Problem","volume":"30","author":"Yusta","year":"2009","journal-title":"Pattern Recognit. Lett."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"3514","DOI":"10.1109\/TGRS.2012.2224874","article-title":"A novel technique for optimal feature selection in attribute profiles based on genetic algorithms","volume":"51","author":"Pedergnana","year":"2013","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"118","DOI":"10.1016\/j.eswa.2017.06.030","article-title":"A New Hybrid Approach for Feature Selection and Support Vector Machine Model Selection Based on Self-Adaptive Cohort Intelligence","volume":"88","author":"Aladeemy","year":"2017","journal-title":"Expert Syst. Appl."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1134\/S0361768817010030","article-title":"Fuzzy Classifier Design Using Harmonic Search Methods","volume":"43","author":"Hodashinsky","year":"2017","journal-title":"Programm. Comput. Soft."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"778","DOI":"10.1007\/978-3-540-72950-1_76","article-title":"Ant colony optimization applied to feature selection in fuzzy classifiers","volume":"4529","author":"Vieira","year":"2007","journal-title":"Lect. Notes Comput. Sci."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"27","DOI":"10.1007\/978-3-319-20294-5_3","article-title":"Glowworm Swarm Based Informative Attribute Selection Using Support Vector Machines for Simultaneous Feature Selection and Classification","volume":"8947","author":"Gurav","year":"2015","journal-title":"Lect. Notes Comput. Sci."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"806","DOI":"10.1016\/j.asoc.2009.09.010","article-title":"Honey Bees Mating Optimization algorithm for financial classification problems","volume":"10","author":"Marinaki","year":"2010","journal-title":"Appl. Soft Comput."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"1211","DOI":"10.3233\/IFS-130807","article-title":"Feature subset selection using improved binary gravitational search algorithm","volume":"26","author":"Rashedi","year":"2014","journal-title":"J. Intell. Fuzzy Syst."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.swevo.2012.09.002","article-title":"S-shaped versus V-shaped transfer functions for binary Particle Swarm Optimization","volume":"9","author":"Mirjalili","year":"2013","journal-title":"Swarm Evolut. Comput."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"338","DOI":"10.1016\/j.asoc.2018.07.052","article-title":"An experimental evaluation of weightless neural networks for multi-class classification","volume":"72","author":"Giordano","year":"2018","journal-title":"Appl. Soft Comput."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"3251","DOI":"10.1109\/TIT.2015.2429139","article-title":"m-ary Balanced Codes with Parallel Decoding","volume":"61","author":"Pelusi","year":"2015","journal-title":"IEEE Trans. Inf. Theory"}],"container-title":["Symmetry"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/2073-8994\/10\/11\/609\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,6,13]],"date-time":"2024-06-13T12:58:14Z","timestamp":1718283494000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/2073-8994\/10\/11\/609"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2018,11,7]]},"references-count":45,"journal-issue":{"issue":"11","published-online":{"date-parts":[[2018,11]]}},"alternative-id":["sym10110609"],"URL":"https:\/\/doi.org\/10.3390\/sym10110609","relation":{},"ISSN":["2073-8994"],"issn-type":[{"value":"2073-8994","type":"electronic"}],"subject":[],"published":{"date-parts":[[2018,11,7]]}}}