{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,7,19]],"date-time":"2024-07-19T00:21:28Z","timestamp":1721348488264},"reference-count":102,"publisher":"MDPI AG","issue":"14","license":[{"start":{"date-parts":[[2024,7,18]],"date-time":"2024-07-18T00:00:00Z","timestamp":1721260800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"National Natural Science Foundation of China","award":["U22A20248","52127803","51931011","51971233","62174165","52201236","M-0152","U20A6001","U1909215","52105286"]},{"name":"External Cooperation Program of Chinese Academy of Sciences","award":["174433KYSB20200013"]},{"name":"K.C. Wong Education Foundation","award":["GJTD-2020-11"]},{"name":"Chinese Academy of Sciences Youth Innovation Promotion Association","award":["Y2022080"]},{"name":"\u201cPioneer\u201d and \u201cLeading Goose\u201d R&D Program of Zhejiang","award":["2022C01032"]},{"name":"Zhejiang Provincial Key R&D Program","award":["2021C01183"]},{"name":"\u201cHigh-level talent special support plan\u201d technology innovation leading talent project of Zhejiang Province","award":["2022R52004"]},{"name":"Natural Science Foundation of Zhejiang Province","award":["LD22E010002"]},{"name":"Zhejiang Provincial Basic Public Welfare Research Project","award":["LGG20F010006"]},{"name":"Ningbo Scientific and Technological Innovation 2025 Major Project","award":["2020Z022"]},{"name":"China Postdoctoral Foundation","award":["2022M723251"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Elastic polymer-based conductive composites (EPCCs) are of great potential in the field of flexible sensors due to the advantages of designable functionality and thermal and chemical stability. As one of the popular choices for sensor electrodes and sensitive materials, considerable progress in EPCCs used in sensors has been made in recent years. In this review, we introduce the types and the conductive mechanisms of EPCCs. Furthermore, the recent advances in the application of EPCCs to sensors are also summarized. This review will provide guidance for the design and optimization of EPCCs and offer more possibilities for the development and application of flexible sensors.<\/jats:p>","DOI":"10.3390\/s24144664","type":"journal-article","created":{"date-parts":[[2024,7,18]],"date-time":"2024-07-18T14:39:26Z","timestamp":1721313566000},"page":"4664","source":"Crossref","is-referenced-by-count":0,"title":["Flexible Sensors Based on Conductive Polymer Composites"],"prefix":"10.3390","volume":"24","author":[{"given":"Dan","family":"Zhao","sequence":"first","affiliation":[{"name":"College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China"},{"name":"CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China"},{"name":"College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China"}]},{"given":"Weiwei","family":"Jia","sequence":"additional","affiliation":[{"name":"CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China"},{"name":"College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China"}]},{"given":"Xiaona","family":"Feng","sequence":"additional","affiliation":[{"name":"CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China"},{"name":"College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-4889-2410","authenticated-orcid":false,"given":"Huali","family":"Yang","sequence":"additional","affiliation":[{"name":"CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China"},{"name":"College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-2277-1618","authenticated-orcid":false,"given":"Yali","family":"Xie","sequence":"additional","affiliation":[{"name":"CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China"},{"name":"College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0996-1038","authenticated-orcid":false,"given":"Jie","family":"Shang","sequence":"additional","affiliation":[{"name":"CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China"},{"name":"College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China"}]},{"given":"Pengjun","family":"Wang","sequence":"additional","affiliation":[{"name":"College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China"},{"name":"College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China"}]},{"given":"Yufeng","family":"Guo","sequence":"additional","affiliation":[{"name":"College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China"}]},{"given":"Run-Wei","family":"Li","sequence":"additional","affiliation":[{"name":"CAS Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China"},{"name":"College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China"}]}],"member":"1968","published-online":{"date-parts":[[2024,7,18]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"221","DOI":"10.1016\/j.cclet.2020.10.028","article-title":"Sensing nanomaterials of wearable glucose sensors","volume":"32","author":"Li","year":"2021","journal-title":"Chin. Chem. Lett."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"2100785","DOI":"10.1002\/aelm.202100785","article-title":"Flexible Hybrid Nanogenerator for Self-Powered Weather and Healthcare Monitoring Sensor","volume":"7","author":"Lee","year":"2021","journal-title":"Adv. Electron. Mater."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"184","DOI":"10.1002\/inf2.12060","article-title":"Physical sensors for skin-inspired electronics","volume":"2","author":"Li","year":"2019","journal-title":"InfoMat"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"541","DOI":"10.1021\/acsnano.1c07645","article-title":"Contact-Resistance-Free Stretchable Strain Sensors with High Repeatability and Linearity","volume":"16","author":"Li","year":"2022","journal-title":"ACS Nano"},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Qu, J., Cui, G., Li, Z., Fang, S., Zhang, X., Liu, A., Han, M., Liu, H., Wang, X., and Wang, X. (2024). Advanced Flexible Sensing Technologies for Soft Robots. Adv. Funct. Mater., early view.","DOI":"10.1002\/adfm.202401311"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"108387","DOI":"10.1016\/j.nanoen.2023.108387","article-title":"All-in-one strain-triboelectric sensors based on environment-friendly ionic hydrogel for wearable sensing and underwater soft robotic grasping","volume":"111","author":"Qu","year":"2023","journal-title":"Nano Energy"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"1805924","DOI":"10.1002\/adfm.201805924","article-title":"Flexible Electronics: Stretchable Electrodes and Their Future","volume":"29","author":"Huang","year":"2019","journal-title":"Adv. Funct. Mater."},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Holze, R. (2022). Conjugated Molecules and Polymers in Secondary Batteries: A Perspective. Molecules, 27.","DOI":"10.3390\/molecules27020546"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Ul Hoque, M.I., and Holze, R. (2023). Intrinsically Conducting Polymer Composites as Active Masses in Supercapacitors. Polymers, 15.","DOI":"10.3390\/polym15030730"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1007\/BF02696146","article-title":"Application of conducting polymers in corrosion protection","volume":"69","author":"Sitaram","year":"1997","journal-title":"J. Coat. Technol."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1866","DOI":"10.1021\/acsaelm.9b00386","article-title":"Asymmetric Structure Based Flexible Strain Sensor for Simultaneous Detection of Various Human Joint Motions","volume":"1","author":"Zhou","year":"2019","journal-title":"ACS Appl. Electron. Mater."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"20007473","DOI":"10.1002\/admi.202000743","article-title":"Flexible Pressure Sensors for Biomedical Applications: From Ex Vivo to In Vivo","volume":"7","author":"Li","year":"2020","journal-title":"Adv. Mater. Interfaces"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"1928","DOI":"10.1002\/adma.201405256","article-title":"Liquid-Phase Metal Inclusions for a Conductive Polymer Composite","volume":"27","author":"Fassler","year":"2015","journal-title":"Adv. Mater."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"4843","DOI":"10.1177\/09544062211055662","article-title":"Fabrication techniques of polymeric nanocomposites: A comprehensive review","volume":"236","author":"Kamal","year":"2022","journal-title":"Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"11219","DOI":"10.1021\/acsnano.8b05822","article-title":"Ultra-Stiff Graphene Foams as Three-Dimensional Conductive Fillers for Epoxy Resin","volume":"12","author":"Han","year":"2018","journal-title":"ACS Nano"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"6279","DOI":"10.1002\/adfm.201601645","article-title":"High-Strength and High-Toughness Double-Cross-Linked Cellulose Hydrogels: A New Strategy Using Sequential Chemical and Physical Cross-Linking","volume":"26","author":"Zhao","year":"2016","journal-title":"Adv. Funct. Mater."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"212","DOI":"10.1126\/science.abg6320","article-title":"Fracture, fatigue, and friction of polymers in which entanglements greatly outnumber cross-links","volume":"374","author":"Kim","year":"2021","journal-title":"Science"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"2100560","DOI":"10.1002\/mame.202100560","article-title":"3D Printing Conductive Composites with Poly(ionic liquid) as a Noncovalent Intermedia to Fabricate Carbon Circuits","volume":"306","author":"Lv","year":"2021","journal-title":"Macromol. Mater. Eng."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"18213","DOI":"10.1021\/acsami.8b03081","article-title":"Connection-Improved Conductive Network of Carbon Nanotubes in a Rubber Cross-Link Network","volume":"10","author":"Gan","year":"2018","journal-title":"ACS Appl. Mater. Interfaces"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"e202403972","DOI":"10.1002\/anie.202403972","article-title":"Upcycling of Carbon Fiber\/Thermoset Composites into High-Performance Elastomers and Repurposed Carbon Fibers","volume":"63","author":"Yang","year":"2024","journal-title":"Angew. Chem. Int. Ed."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Mousavi, S.M., Nezhad, F.F., Ghahramani, Y., Binazadeh, M., Javidi, Z., Azhdari, R., Gholami, A., Omidifar, N., Rahman, M.M., and Chiang, W.H. (2024). Recent Advances in Bioactive Carbon Nanotubes Based on Polymer Composites for Biosensor Applications. Chem. Biodivers., 21.","DOI":"10.1002\/cbdv.202301288"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Li, J.W., Chen, H.F., Huang, P.H., Kuo, C.J., Cheng, C.C., and Chiu, C.W. (2023). Photocurable Carbon Nanotube\/Polymer Nanocomposite for the 3D Printing of Flexible Capacitive Pressure Sensors. Polymers, 15.","DOI":"10.3390\/polym15244706"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1809","DOI":"10.1021\/acssensors.3c02361","article-title":"Smart Graphene Textiles for Biopotential Monitoring: Laser-Tailored Electrochemical Property Enhancement","volume":"9","author":"Fatkullin","year":"2024","journal-title":"ACS Sens."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"887","DOI":"10.1016\/j.snb.2005.03.116","article-title":"Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration","volume":"113","author":"Xie","year":"2006","journal-title":"Sens. Actuators B"},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Song, J., Kim, Y., Kang, K., Lee, S., Shin, M., and Son, D. (2022). Stretchable and Self-Healable Graphene\u2013Polymer Conductive Composite for Wearable EMG Sensor. Polymers, 14.","DOI":"10.3390\/polym14183766"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"100454","DOI":"10.1016\/j.mtchem.2021.100454","article-title":"Versatile fullerenes as sensor materials","volume":"20","author":"Shetti","year":"2021","journal-title":"Mater. Today Chem."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"3123","DOI":"10.1007\/s10570-021-03730-z","article-title":"Flexible textile ion sensors based on reduced graphene oxide\/fullerene and their potential applications of sweat characterization","volume":"28","author":"Zhang","year":"2021","journal-title":"Cellulose"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"72","DOI":"10.1007\/s40820-018-0223-3","article-title":"Biogreen Synthesis of Carbon Dots for Biotechnology and Nanomedicine Applications","volume":"10","author":"Chan","year":"2018","journal-title":"Nano-Micro Lett."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"23","DOI":"10.1016\/j.mattod.2020.04.008","article-title":"Nanobiosensing with graphene and carbon quantum dots: Recent advances","volume":"39","author":"Walther","year":"2020","journal-title":"Mater. Today"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1800850","DOI":"10.1002\/adfm.201800850","article-title":"Lowering Internal Friction of 0D\u20131D\u20132D Ternary Nanocomposite-Based Strain Sensor by Fullerene to Boost the Sensing Performance","volume":"28","author":"Shi","year":"2018","journal-title":"Adv. Funct. Mater."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"135493","DOI":"10.1016\/j.snb.2024.135493","article-title":"A highly sensitive flexible humidity sensor based on a wafer-level composite material of carbon-quantum-dots@nanofiber clusters","volume":"407","author":"Zhao","year":"2024","journal-title":"Sens. Actuators B"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"2151","DOI":"10.1021\/acsanm.2c05264","article-title":"Poly(ethylene glycol)\u2013Fullerene Composite Films and Free-Standing Nanosheets for Flexible Electronic Devices and Sensors","volume":"6","author":"Zhao","year":"2023","journal-title":"ACS Appl. Nano Mater."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"456","DOI":"10.1038\/s41586-022-05579-z","article-title":"A universal interface for plug-and-play assembly of stretchable devices","volume":"614","author":"Jiang","year":"2023","journal-title":"Nature"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/s40097-020-00372-8","article-title":"Electrochemical sensors using conducting polymer\/noble metal nanoparticle nanocomposites for the detection of various analytes: A review","volume":"11","author":"John","year":"2021","journal-title":"J. Nanostruct. Chem."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"323","DOI":"10.1007\/s40097-021-00436-3","article-title":"Recent progress for silver nanowires conducting film for flexible electronics","volume":"11","author":"Zhang","year":"2021","journal-title":"J. Nanostruct. Chem."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"101505","DOI":"10.1016\/j.progpolymsci.2022.101505","article-title":"Recent progress in polymer\/two-dimensional nanosheets composites with novel performances","volume":"126","author":"Li","year":"2022","journal-title":"Prog. Polym. Sci."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Xu, D., Cao, J., Liu, F., Zou, S., Lei, W., Wu, Y., Liu, Y., Shang, J., and Li, R.W. (2022). Liquid Metal Based Nano-Composites for Printable Stretchable Electronics. Sensors, 22.","DOI":"10.3390\/s22072516"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"2210553","DOI":"10.1002\/adfm.202210553","article-title":"Segregated and Non-Settling Liquid Metal Elastomer via Jamming of Elastomeric Particles","volume":"33","author":"Xue","year":"2022","journal-title":"Adv. Funct. Mater."},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Zhang, Q., Lu, H., Yun, G., Gong, L., Chen, Z., Jin, S., Du, H., Jiang, Z., and Li, W. (2023). A Laminated Gravity-Driven Liquid Metal-Doped Hydrogel of Unparalleled Toughness and Conductivity. Adv. Funct. Mater., early view.","DOI":"10.1002\/adfm.202308113"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"e12302","DOI":"10.1002\/inf2.12302","article-title":"Ultra-robust stretchable electrode for e-skin: In situ assembly using a nanofiber scaffold and liquid metal to mimic water-to-net interaction","volume":"4","author":"Cao","year":"2022","journal-title":"InfoMat"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"88","DOI":"10.1126\/science.abh3551","article-title":"Monolithic optical microlithography of high-density elastic circuits","volume":"373","author":"Zheng","year":"2021","journal-title":"Science"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"4235","DOI":"10.1039\/D3TC00442B","article-title":"A highly stable elastic electrode via direct covalent crosslinking for strain sensors","volume":"11","author":"Wang","year":"2023","journal-title":"J. Mater. Chem. C"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"303","DOI":"10.1016\/S1872-5805(22)60589-4","article-title":"Advances in flexible sensors with MXene materials","volume":"37","author":"Jiang","year":"2022","journal-title":"New Carbon Mater."},{"key":"ref_44","first-page":"135","article-title":"MXene-Based Elastomer Mimetic Stretchable Sensors: Design, Properties, and Applications","volume":"16","author":"Das","year":"2024","journal-title":"Nanomicro Lett."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"139141","DOI":"10.1016\/j.electacta.2021.139141","article-title":"High performance stretchable fibrous supercapacitors and flexible strain sensors based on CNTs\/MXene-TPU hybrid fibers","volume":"395","author":"Wu","year":"2021","journal-title":"Electrochim. Acta"},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"132788","DOI":"10.1016\/j.snb.2022.132788","article-title":"PSS-doped PANI nanoparticle\/Ti3C2Tx composites for conductometric flexible ammonia gas sensors operated at room temperature","volume":"374","author":"Wen","year":"2023","journal-title":"Sens. Actuators B"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.jes.2023.10.006","article-title":"A highly sensitive electrochemical sensor based on poly(3-aminobenzoic acid)\/graphene oxide-gold nanoparticles modified screen printed carbon electrode for paraquat detection","volume":"148","author":"Pimalai","year":"2025","journal-title":"J. Environ. Sci."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"085401","DOI":"10.1088\/1361-6463\/abc77b","article-title":"Novel conductive polymer composites based on CNTs\/CNFs bridged liquid metal","volume":"54","author":"Pan","year":"2021","journal-title":"J. Phys. D Appl. Phys."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"134906","DOI":"10.1063\/1.5089579","article-title":"Ultra-flexible and high-performance electromagnetic wave shielding film based on CNTF\/liquid metal composite films","volume":"125","author":"Ou","year":"2019","journal-title":"J. Appl. Phys."},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"214","DOI":"10.1016\/j.powtec.2020.07.025","article-title":"Characterization of designed, transparent and conductive Al doped ZnO particles and their utilization in conductive polymer composites","volume":"374","author":"Sengun","year":"2020","journal-title":"Powder Technol."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"8065","DOI":"10.1002\/pc.28324","article-title":"Low percolation threshold polyvinylidene fluoride\/multi-walled carbon nanotube composites: A perspective of electrical conductivity, crystalline, rheological and mechanical properties","volume":"45","author":"Tang","year":"2024","journal-title":"Polym. Compos."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"2187","DOI":"10.1111\/j.1151-2916.1990.tb07576.x","article-title":"Electrical Resistivity of Composites","volume":"73","author":"McLachlan","year":"1990","journal-title":"J. Am. Ceram. Soc."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"443","DOI":"10.1098\/rspl.1904.0058","article-title":"Colours in metal glasses and in metallic films","volume":"73","author":"Garnett","year":"1904","journal-title":"Proc. R. Soc. Lond."},{"key":"ref_54","doi-asserted-by":"crossref","unstructured":"Tuncer, E., and Niklasson, G. (2014, January 19\u201322). Properties of Bruggeman dielectric mixture expression. Proceedings of the 2014 IEEE Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), Des Moines, IA, USA.","DOI":"10.1109\/CEIDP.2014.6995867"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"1200","DOI":"10.1002\/pen.760311608","article-title":"Electrical conductivity in heterogeneous polymer systems. V (1): Further experimental evidence for a phase transition at the critical volume concentration","volume":"31","author":"Wessling","year":"1991","journal-title":"Polym. Eng. Sci."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"1566","DOI":"10.1039\/C8CS00706C","article-title":"High-performance stretchable conductive nanocomposites: Materials, processes, and device applications","volume":"48","author":"Choi","year":"2019","journal-title":"Chem. Soc. Rev."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"e2310849","DOI":"10.1002\/adma.202310849","article-title":"Biphasic GaIn Alloy Constructed Stable Percolation Network in Polymer Composites over Ultrabroad Temperature Region","volume":"36","author":"Zhou","year":"2024","journal-title":"Adv. Mater."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"170","DOI":"10.5254\/1.3542660","article-title":"Carbon Blacks for Highly Conductive Rubber","volume":"30","author":"Polley","year":"1957","journal-title":"Rubber Chem. Technol."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"1793","DOI":"10.1063\/1.1702682","article-title":"Generalized Formula for the Electric Tunnel Effect between Similar Electrodes Separated by a Thin Insulating Film","volume":"34","author":"Simmons","year":"1963","journal-title":"J. Appl. Phys."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"510","DOI":"10.1103\/PhysRev.91.510","article-title":"Current Density Tables for Field Emission Theory","volume":"91","author":"Dolan","year":"1953","journal-title":"Phys. Rev."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"2252","DOI":"10.1038\/s41467-020-15709-8","article-title":"Electron tunneling of hierarchically structured silver nanosatellite particles for highly conductive healable nanocomposites","volume":"11","author":"Suh","year":"2020","journal-title":"Nat. Commun."},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"623","DOI":"10.1038\/s41467-023-36214-8","article-title":"Conductive and elastic bottlebrush elastomers for ultrasoft electronics","volume":"14","author":"Xu","year":"2023","journal-title":"Nat. Commun."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"9066","DOI":"10.1021\/acsnano.0c04158","article-title":"Highly Robust and Self-Powered Electronic Skin Based on Tough Conductive Self-Healing Elastomer","volume":"14","author":"Xun","year":"2020","journal-title":"ACS Nano"},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"2204878","DOI":"10.1002\/adfm.202204878","article-title":"Printable and Stretchable Conductive Elastomers for Monitoring Dynamic Strain with High Fidelity","volume":"32","author":"Yuan","year":"2022","journal-title":"Adv. Funct. Mater."},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"e2101396","DOI":"10.1002\/adma.202101396","article-title":"Dynamically Crosslinked Dry Ion-Conducting Elastomers for Soft Iontronics","volume":"33","author":"Zhang","year":"2021","journal-title":"Adv. Mater."},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"3048","DOI":"10.1038\/s41467-024-47408-z","article-title":"Ultrafast piezocapacitive soft pressure sensors with over 10 kHz bandwidth via bonded microstructured interfaces","volume":"15","author":"Zhang","year":"2024","journal-title":"Nat. Commun."},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Kang, Z., Li, X., Zhao, X., Wang, X., Shen, J., Wei, H., and Zhu, X. (2023). Piezo-Resistive Flexible Pressure Sensor by Blade-Coating Graphene\u2013Silver Nanosheet\u2013Polymer Nanocomposite. Nanomaterials, 13.","DOI":"10.3390\/nano13010004"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"4689","DOI":"10.1021\/nn500441k","article-title":"Giant Tunneling Piezoresistance of Composite Elastomers with Interlocked Microdome Arrays for Ultrasensitive and Multimodal Electronic Skins","volume":"8","author":"Park","year":"2014","journal-title":"ACS Nano"},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"49642","DOI":"10.1021\/acsami.3c10975","article-title":"Temperature-Immune, Wide-Range Flexible Robust Pressure Sensors for Harsh Environments","volume":"15","author":"Lin","year":"2023","journal-title":"ACS Appl. Mater. Interfaces"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"2000875","DOI":"10.1002\/admi.202000875","article-title":"A Carbon Flower Based Flexible Pressure Sensor Made from Large-Area Coating","volume":"7","author":"Gong","year":"2020","journal-title":"Adv. Mater. Interfaces"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"2001023","DOI":"10.1002\/admt.202001023","article-title":"Recent Progress on Flexible Capacitive Pressure Sensors: From Design and Materials to Applications","volume":"6","author":"Mishra","year":"2021","journal-title":"Adv. Mater. Technol."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"2103320","DOI":"10.1002\/adma.202103320","article-title":"Highly Sensitive Capacitive Pressure Sensors over a Wide Pressure Range Enabled by the Hybrid Responses of a Highly Porous Nanocomposite","volume":"33","author":"Ha","year":"2021","journal-title":"Adv. Mater."},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"109518","DOI":"10.1016\/j.compscitech.2022.109518","article-title":"MWCNTs\/PDMS composite enabled printed flexible omnidirectional strain sensors for wearable electronics","volume":"226","author":"Yang","year":"2022","journal-title":"Compos. Sci. Technol."},{"key":"ref_74","doi-asserted-by":"crossref","unstructured":"Yin, F., Ye, D., Zhu, C., Qiu, L., and Huang, Y. (2017). Stretchable, Highly Durable Ternary Nanocomposite Strain Sensor for Structural Health Monitoring of Flexible Aircraft. Sensors, 17.","DOI":"10.3390\/s17112677"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"142055","DOI":"10.1016\/j.cej.2023.142055","article-title":"Strain-induced conductive network and memory effect of maximum strain in liquid metal hierarchical structure","volume":"461","author":"Wang","year":"2023","journal-title":"Chem. Eng. J."},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"103898","DOI":"10.1016\/j.nanoen.2019.103898","article-title":"Biomimetic printable nanocomposite for healable, ultrasensitive, stretchable and ultradurable strain sensor","volume":"63","author":"Liu","year":"2019","journal-title":"Nano Energy"},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"2214907","DOI":"10.1002\/adfm.202214907","article-title":"Dual Mode Strain\u2013Temperature Sensor with High Stimuli Discriminability and Resolution for Smart Wearables","volume":"33","author":"Xiao","year":"2023","journal-title":"Adv. Funct. Mater."},{"key":"ref_78","doi-asserted-by":"crossref","first-page":"200","DOI":"10.1186\/s11671-020-03428-4","article-title":"Printable, Highly Sensitive Flexible Temperature Sensors for Human Body Temperature Monitoring: A Review","volume":"15","author":"Su","year":"2020","journal-title":"Nanoscale Res. Lett."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"6472","DOI":"10.1038\/s41467-022-34168-x","article-title":"A biomimetic laminated strategy enabled strain-interference free and durable flexible thermistor electronics","volume":"13","author":"Hao","year":"2022","journal-title":"Nat. Commun."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"1381","DOI":"10.1002\/pc.27178","article-title":"High-performance flexible temperature sensor from hybrid nanocomposite for continuous human body temperature monitoring","volume":"44","author":"Phadkule","year":"2023","journal-title":"Polym. Compos."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"3438","DOI":"10.1002\/adfm.201304224","article-title":"Flexible and Transparent Nanocomposite of Reduced Graphene Oxide and P(VDF-TrFE) Copolymer for High Thermal Responsivity in a Field-Effect Transistor","volume":"24","author":"Trung","year":"2014","journal-title":"Adv. Funct. Mater."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"1712","DOI":"10.1007\/s42765-023-00306-3","article-title":"Thermally Drawn Multi-material Fibers Based on Polymer Nanocomposite for Continuous Temperature Sensing","volume":"5","author":"Ryu","year":"2023","journal-title":"Adv. Fiber Mater."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"025035","DOI":"10.1088\/1361-665X\/abd83a","article-title":"Screen-printed flexible negative temperature coefficient temperature sensor based on polyvinyl chloride\/carbon black composites","volume":"30","author":"Xiao","year":"2021","journal-title":"Smart Mater. Struct."},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"107989","DOI":"10.1016\/j.porgcoat.2023.107989","article-title":"A fiber-shaped temperature sensor composed of chitosan\/rGO with high sensitivity and ultra-fast response and recovery for real-time temperature monitoring","volume":"186","author":"Kong","year":"2024","journal-title":"Prog. Org. Coat."},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"9593","DOI":"10.1007\/s10854-019-01293-1","article-title":"Screen-printed flexible temperature sensor based on FG\/CNT\/PDMS composite with constant TCR","volume":"30","author":"Wu","year":"2019","journal-title":"J. Mater. Sci. Mater. Electron."},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"43844","DOI":"10.1021\/acsami.2c15687","article-title":"Wearable Temperature Sensor with High Resolution for Skin Temperature Monitoring","volume":"14","author":"Li","year":"2022","journal-title":"ACS Appl. Mater. Interfaces"},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"21073","DOI":"10.1021\/acsnano.3c04246","article-title":"An Antisweat Interference and Highly Sensitive Temperature Sensor Based on Poly(3,4-ethylenedioxythiophene)-Poly(styrenesulfonate) Fiber Coated with Polyurethane\/Graphene for Real-Time Monitoring of Body Temperature","volume":"17","author":"Fan","year":"2023","journal-title":"ACS Nano"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"2321","DOI":"10.1109\/JSEN.2023.3334868","article-title":"Review of Flexible Biomedical Sensors: Design, Application, and Challenge","volume":"24","author":"Yi","year":"2024","journal-title":"IEEE Sens. J."},{"key":"ref_89","doi-asserted-by":"crossref","first-page":"5211","DOI":"10.1021\/acsnano.2c12606","article-title":"Technology Roadmap for Flexible Sensors","volume":"17","author":"Luo","year":"2023","journal-title":"ACS Nano"},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"1040","DOI":"10.1021\/acssensors.9b00230","article-title":"Flexible Biosensors for the Impedimetric Detection of Protein Targets Using Silk-Conductive Polymer Biocomposites","volume":"4","author":"Xu","year":"2019","journal-title":"ACS Sens."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"6190","DOI":"10.1039\/D3TA07687C","article-title":"Recent progress in polyaniline-based chemiresistive flexible gas sensors: Design, nanostructures, and composite materials","volume":"12","author":"Wen","year":"2024","journal-title":"J. Mater. Chem. A"},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"407","DOI":"10.1002\/inf2.12032","article-title":"High-performance flexible sensing devices based on polyaniline\/MXene nanocomposites","volume":"1","author":"Zhao","year":"2019","journal-title":"InfoMat"},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"12897","DOI":"10.1021\/acsanm.2c02750","article-title":"In Situ Surface-Enhanced Raman Scattering Detection of a SARS-CoV-2 Biomarker Using Flexible and Transparent Polydimethylsiloxane Films with Embedded Au Nanoplates","volume":"5","author":"Yue","year":"2022","journal-title":"ACS Appl. Nano Mater."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"2082","DOI":"10.1038\/srep02082","article-title":"Nanocomposite based flexible ultrasensitive resistive gas sensor for chemical reactions studies","volume":"3","author":"Pandey","year":"2013","journal-title":"Sci. Rep."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"12496","DOI":"10.1039\/C9RA00936A","article-title":"Fabrication of polyaniline\u2013graphene\/polystyrene nanocomposites for flexible gas sensors","volume":"9","author":"Bhadra","year":"2019","journal-title":"RSC Adv."},{"key":"ref_96","doi-asserted-by":"crossref","unstructured":"Alharthy, R.D., and Saleh, A. (2021). A Novel Trace-Level Ammonia Gas Sensing Based on Flexible PAni-CoFe2O4 Nanocomposite Film at Room Temperature. Polymers, 13.","DOI":"10.3390\/polym13183077"},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"150","DOI":"10.1007\/s40820-022-00895-5","article-title":"Multifunctional Flexible Humidity Sensor Systems Towards Noncontact Wearable Electronics","volume":"14","author":"Lu","year":"2022","journal-title":"Nano-Micro Lett."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"57","DOI":"10.1007\/s40820-020-00580-5","article-title":"Electrospinning of Flexible Poly(vinyl alcohol)\/MXene Nanofiber-Based Humidity Sensor Self-Powered by Monolayer Molybdenum Diselenide Piezoelectric Nanogenerator","volume":"13","author":"Wang","year":"2021","journal-title":"Nano-Micro Lett."},{"key":"ref_99","doi-asserted-by":"crossref","first-page":"367","DOI":"10.1016\/j.jcis.2021.08.214","article-title":"Single-sided and integrated polyaniline\/poly(vinylidene fluoride) flexible membrane with micro\/nanostructures as breathable, nontoxic and fast response wearable humidity sensor","volume":"607","author":"Zhao","year":"2022","journal-title":"J. Colloid Interface Sci."},{"key":"ref_100","doi-asserted-by":"crossref","first-page":"5721","DOI":"10.1021\/acsami.1c20918","article-title":"A Printed Flexible Humidity Sensor with High Sensitivity and Fast Response Using a Cellulose Nanofiber\/Carbon Black Composite","volume":"14","author":"Tachibana","year":"2022","journal-title":"ACS Appl. Mater. Interfaces"},{"key":"ref_101","doi-asserted-by":"crossref","unstructured":"Khan, S.A., Saqib, M., Rehman, M.M., Mutee Ur Rehman, H.M., Rahman, S.A., Yang, Y., Kim, S., and Kim, W.-Y. (2021). A Full-Range Flexible and Printed Humidity Sensor Based on a Solution-Processed P(VDF-TrFE)\/Graphene-Flower Composite. Nanomaterials, 11.","DOI":"10.3390\/nano11081915"},{"key":"ref_102","doi-asserted-by":"crossref","first-page":"141970","DOI":"10.1016\/j.cej.2023.141970","article-title":"A P(VDF-TrFE) nanofiber composites based multilayer structured dual-functional flexible sensor for advanced pressure-humidity sensing","volume":"461","author":"Guo","year":"2023","journal-title":"Chem. Eng. J."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/24\/14\/4664\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,7,18]],"date-time":"2024-07-18T15:12:39Z","timestamp":1721315559000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/24\/14\/4664"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,7,18]]},"references-count":102,"journal-issue":{"issue":"14","published-online":{"date-parts":[[2024,7]]}},"alternative-id":["s24144664"],"URL":"https:\/\/doi.org\/10.3390\/s24144664","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,7,18]]}}}