{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,11,22]],"date-time":"2024-11-22T05:30:37Z","timestamp":1732253437305,"version":"3.28.0"},"reference-count":53,"publisher":"MDPI AG","issue":"12","license":[{"start":{"date-parts":[[2024,6,13]],"date-time":"2024-06-13T00:00:00Z","timestamp":1718236800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003593","name":"Brazilian National Research Council","doi-asserted-by":"publisher","award":["141595\/2023-0","141368\/2023-3","308092\/2020-1","407063\/2021-8","303544\/2023-6"],"id":[{"id":"10.13039\/501100003593","id-type":"DOI","asserted-by":"publisher"}]},{"name":"Coordena\u00e7\u00e3o de Aperfei\u00e7oamento de Pessoal de N\u00edvel Superior\u2014Brazil"},{"name":"Funda\u00e7\u00e3o de Amparo \u00e0 Pesquisa do Estado de Minas Gerais\u2014Brazil","award":["APQ-02228-22"]},{"DOI":"10.13039\/501100001807","name":"S\u00e3o Paulo Research Foundation","doi-asserted-by":"publisher","award":["2018\/15472-9","2021\/05336-3"],"id":[{"id":"10.13039\/501100001807","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"In robotics, the ability of quadruped robots to perform tasks in industrial, mining, and disaster environments has already been demonstrated. To ensure the safe execution of tasks by the robot, meticulous planning of its foot placements and precise leg control are crucial. Traditional motion planning and control methods for quadruped robots often rely on complex models of both the robot itself and its surrounding environment. Establishing these models can be challenging due to their nonlinear nature, often entailing significant computational resources. However, a more simplified approach exists that focuses on the kinematic model of the robot\u2019s floating base for motion planning. This streamlined method is easier to implement but also adaptable to simpler hardware configurations. Moreover, integrating impedance control into the leg movements proves advantageous, particularly when traversing uneven terrain. This article presents a novel approach in which a quadruped robot employs impedance control for each leg. It utilizes sixth-degree B\u00e9zier curves to generate reference trajectories derived from leg velocities within a planar kinematic model for body control. This scheme effectively guides the robot along predefined paths. The proposed control strategy is implemented using the Robot Operating System (ROS) and is validated through simulations and physical experiments on the Go1 robot. The results of these tests demonstrate the effectiveness of the control strategy, enabling the robot to track reference trajectories while showing stable walking and trotting gaits.<\/jats:p>","DOI":"10.3390\/s24123825","type":"journal-article","created":{"date-parts":[[2024,6,13]],"date-time":"2024-06-13T14:41:03Z","timestamp":1718289663000},"page":"3825","source":"Crossref","is-referenced-by-count":1,"title":["Quadruped Robot Control: An Approach Using Body Planar Motion Control, Legs Impedance Control and B\u00e9zier Curves"],"prefix":"10.3390","volume":"24","author":[{"given":"Gabriel Duarte Gon\u00e7alves","family":"Pedro","sequence":"first","affiliation":[{"name":"Mechanical Engineering Department, S\u00e3o Carlos School of Engineering, University of S\u00e3o Paulo, S\u00e3o Carlos 13566-590, SP, Brazil"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3700-8578","authenticated-orcid":false,"given":"Gabriel","family":"Bermudez","sequence":"additional","affiliation":[{"name":"Mechanical Engineering Department, S\u00e3o Carlos School of Engineering, University of S\u00e3o Paulo, S\u00e3o Carlos 13566-590, SP, Brazil"}]},{"given":"Vivian Suzano","family":"Medeiros","sequence":"additional","affiliation":[{"name":"Mechanical Engineering Department, S\u00e3o Carlos School of Engineering, University of S\u00e3o Paulo, S\u00e3o Carlos 13566-590, SP, Brazil"}]},{"given":"H\u00e9lio Jacinto da","family":"Cruz Neto","sequence":"additional","affiliation":[{"name":"Mechanical Engineering Department, S\u00e3o Carlos School of Engineering, University of S\u00e3o Paulo, S\u00e3o Carlos 13566-590, SP, Brazil"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3842-2906","authenticated-orcid":false,"given":"Luiz Guilherme Dias de","family":"Barros","sequence":"additional","affiliation":[{"name":"Mechanical Engineering Department, S\u00e3o Carlos School of Engineering, University of S\u00e3o Paulo, S\u00e3o Carlos 13566-590, SP, Brazil"},{"name":"Robotics Lab, Instituto Tecnologico Vale, Ouro Preto 35400-000, MG, Brazil"}]},{"given":"Gustavo","family":"Pessin","sequence":"additional","affiliation":[{"name":"Robotics Lab, Instituto Tecnologico Vale, Ouro Preto 35400-000, MG, Brazil"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7508-5817","authenticated-orcid":false,"given":"Marcelo","family":"Becker","sequence":"additional","affiliation":[{"name":"Mechanical Engineering Department, S\u00e3o Carlos School of Engineering, University of S\u00e3o Paulo, S\u00e3o Carlos 13566-590, SP, Brazil"}]},{"given":"Gustavo Medeiros","family":"Freitas","sequence":"additional","affiliation":[{"name":"Electrical Engineering Department, Federal University of Minas Gerais, Belo Horizonte 31270-901, MG, Brazil"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-9008-9883","authenticated-orcid":false,"given":"Thiago","family":"Boaventura","sequence":"additional","affiliation":[{"name":"Mechanical Engineering Department, S\u00e3o Carlos School of Engineering, University of S\u00e3o Paulo, S\u00e3o Carlos 13566-590, SP, Brazil"}]}],"member":"1968","published-online":{"date-parts":[[2024,6,13]]},"reference":[{"key":"ref_1","first-page":"54","article-title":"ANYmal: A Unique Quadruped Robot Conquering Harsh Environments","volume":"126","author":"Fankhauser","year":"2018","journal-title":"Res. Features"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1314","DOI":"10.1002\/rob.21964","article-title":"Towards autonomous inspection of concrete deterioration in sewers with legged robots","volume":"37","author":"Kolvenbach","year":"2020","journal-title":"J. Field Robot."},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Wang, Y., Ramezani, M., and Fallon, M. (August, January 31). Actively Mapping Industrial Structures with Information Gain-Based Planning on a Quadruped Robot. Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France.","DOI":"10.1109\/ICRA40945.2020.9197153"},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Buchli, J., Kalakrishnan, M., Mistry, M., Pastor, P., and Schaal, S. (2009, January 10\u201315). Compliant quadruped locomotion over rough terrain. Proceedings of the IEEE\/RSJ International Conference on Intelligent Robots and Systems, St. Louis, MO, USA.","DOI":"10.1109\/IROS.2009.5354681"},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Amatucci, L., Turrisi, G., Bratta, A., Barasuol, V., and Semini, C. (2024). VERO: A vacuum-cleaner-equipped quadruped robot for efficient litter removal. J. Field Robot.","DOI":"10.1002\/rob.22350"},{"key":"ref_6","unstructured":"Kolvenbach, H., Arm, P., Valsecchi, G., Rudin, N., and Hutter, M. (2022, January 27). Towards Legged Robots for Planetary Exploration. Proceedings of the ICRA Workshop on Legged Robots, Philadelphia, PA, USA."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Boaventura, T., Semini, C., Buchli, J., Frigerio, M., Focchi, M., and Caldwell, D.G. (2012, January 14\u201318). Dynamic torque control of a hydraulic quadruped robot. Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA.","DOI":"10.1109\/ICRA.2012.6224628"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Pandala, A., Kamidi, V.R., and Hamed, K.A. (2020\u201324, January 24). Decentralized Control Schemes for Stable Quadrupedal Locomotion: A Decomposition Approach from Centralized Controllers. Proceedings of the 2020 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), Las Vegas, NV, USA.","DOI":"10.1109\/IROS45743.2020.9341321"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Liu, M., Qu, D., Xu, F., Zou, F., Di, P., and Tang, C. (2019). Quadrupedal Robots Whole-Body Motion Control Based on Centroidal Momentum Dynamics. Appl. Sci., 9.","DOI":"10.3390\/app9071335"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"1003","DOI":"10.1177\/0278364915578839","article-title":"Towards versatile legged robots through active impedance control","volume":"34","author":"Semini","year":"2015","journal-title":"Int. J. Robot. Res."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Park, J., and Park, J.H. (2012, January 7\u201312). Impedance control of quadruped robot and its impedance characteristic modulation for trotting on irregular terrain. Proceedings of the 2012 IEEE\/RSJ International Conference on Intelligent Robots and Systems, Vilamoura-Algarve, Portugal.","DOI":"10.1109\/IROS.2012.6385710"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Angelini, F., Xin, G., Wolfslag, W.J., Tiseo, C., Mistry, M., Garabini, M., Bicchi, A., and Vijayakumar, S. (2019, January 3\u20138). Online Optimal Impedance Planning for Legged Robots. Proceedings of the 2019 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China.","DOI":"10.1109\/IROS40897.2019.8967696"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Zhang, C., Shen, K., Wei, Q., and Ma, H. (2020, January 6\u20138). Research on Impedance Control Method of Legged Robot with Gait and Load Adaptive Capability. Proceedings of the 2020 Chinese Automation Congress (CAC), Shanghai, China.","DOI":"10.1109\/CAC51589.2020.9326924"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Gehring, C., Coros, S., Hutter, M., Bloesch, M., Hoepflinger, M.A., and Siegwart, R. (2013, January 6\u201310). Control of dynamic gaits for a quadrupedal robot. Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany.","DOI":"10.1109\/ICRA.2013.6631035"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Raibert, M.H. (1986). Legged Robots That Balance, MIT Press.","DOI":"10.1109\/MEX.1986.4307016"},{"key":"ref_16","unstructured":"Kim, D., Di Carlo, J., Katz, B., Bledt, G., and Kim, S. (2019). Highly Dynamic Quadruped Locomotion via Whole-Body Impulse Control and Model Predictive Control. arXiv."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"3402","DOI":"10.1109\/TRO.2023.3275384","article-title":"Perceptive Locomotion Through Nonlinear Model-Predictive Control","volume":"39","author":"Grandia","year":"2023","journal-title":"IEEE Trans. Robot."},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Hou, W., Ma, L., Wang, J., and Zhao, J. (2020, January 22\u201324). Walking Decision of Hydraulic Quadruped Robot in Complex Environment. Proceedings of the 2020 Chinese Control and Decision Conference (CCDC), Hefei, China.","DOI":"10.1109\/CCDC49329.2020.9164840"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Jin, B., Sun, C., Zhang, A., Ding, N., Lin, J., Deng, G., Zhu, Z., and Sun, Z. (2019, January 3\u20138). Joint Torque Estimation toward Dynamic and Compliant Control for Gear-Driven Torque Sensorless Quadruped Robot. Proceedings of the 2019 IEEE\/RSJ International Conference on Intelligent Robots and Systems (IROS), Macau, China.","DOI":"10.1109\/IROS40897.2019.8968168"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1417","DOI":"10.1177\/0278364914532150","article-title":"High speed trot-running: Implementation of a hierarchical controller using proprioceptive impedance control on the MIT Cheetah","volume":"33","author":"Hyun","year":"2014","journal-title":"Int. J. Robot. Res."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"2908","DOI":"10.1109\/TRO.2022.3172469","article-title":"RLOC: Terrain-Aware Legged Locomotion Using Reinforcement Learning and Optimal Control","volume":"38","author":"Gangapurwala","year":"2022","journal-title":"IEEE Trans. Robot."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"3395","DOI":"10.1109\/TRO.2022.3186804","article-title":"TAMOLS: Terrain-Aware Motion Optimization for Legged Systems","volume":"38","author":"Jenelten","year":"2022","journal-title":"IEEE Trans. Robot."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"903","DOI":"10.1177\/02783649221102473","article-title":"Offline motion libraries and online MPC for advanced mobility skills","volume":"41","author":"Bjelonic","year":"2022","journal-title":"Int. J. Robot. Res."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Leziart, P.A., Flayols, T., Grimminger, F., Mansard, N., and Soueres, P. (June, January 30). Implementation of a Reactive Walking Controller for the New Open-Hardware Quadruped Solo-12. Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi\u2019an, China.","DOI":"10.1109\/ICRA48506.2021.9561559"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1238","DOI":"10.1177\/0278364913495721","article-title":"Reinforcement learning in robotics: A survey","volume":"32","author":"Kober","year":"2013","journal-title":"Int. J. Robot. Res."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Belter, D., Bednarek, J., Lin, H.C., Xin, G., and Mistry, M. (2019, January 20\u201324). Single-shot Foothold Selection and Constraint Evaluation for Quadruped Locomotion. Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada.","DOI":"10.1109\/ICRA.2019.8793801"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"eabc5986","DOI":"10.1126\/scirobotics.abc5986","article-title":"Learning quadrupedal locomotion over challenging terrain","volume":"5","author":"Lee","year":"2020","journal-title":"Sci. Robot."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"eabc5986","DOI":"10.1126\/scirobotics.abk2822","article-title":"Learning robust perceptive locomotion for quadrupedal robots in the wild","volume":"7","author":"Miki","year":"2022","journal-title":"Sci. Robot."},{"key":"ref_29","unstructured":"Feng, G., Zhang, H., Li, Z., Peng, X.B., Basireddy, B., Yue, L., Song, Z., Yang, L., Liu, Y., and Sreenath, K. (2022, January 14). GenLoco: Generalized Locomotion Controllers for Quadrupedal Robots. Proceedings of the 6th Conference on Robot Learning (CoRL), Auckland, New Zealand."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Ma, Y.J., Liang, W., Wang, H., Wang, S., Zhu, Y., Fan, L., Bastani, O., and Jayaraman, D. (2024, January 15\u201319). DrEureka: Language Model Guided Sim-To-Real Transfer. Proceedings of the Robotics: Science and Systems (RSS), Delft, The Netherlands.","DOI":"10.15607\/RSS.2024.XX.094"},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Peters, J., Lee, D.D., Kober, J., Nguyen-Tuong, D., Bagnell, D., and Schaal, S. (2016). Springer Handbook of Robotics, Springer International Publishing. [2nd ed.]. Chapter Robot Learning.","DOI":"10.1007\/978-3-319-32552-1_15"},{"key":"ref_32","first-page":"SBAI2021","article-title":"Controle complacente de passo para um rob\u00f4 quadrupede utilizando curvas de B\u00e9zier","volume":"1","author":"Pedro","year":"2021","journal-title":"SBA Soc. Bras. Autom."},{"key":"ref_33","first-page":"CBA2022","article-title":"Controle din\u00e2mico de marcha e passo para um rob\u00f4 quadrupede utilizando curvas de B\u00e9zier","volume":"3","author":"Pedro","year":"2022","journal-title":"SBA Soc. Bras. Autom."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Pedro, G.D.G., Cunha, T.B., J\u00fanior, P.A.A.M., and Freitas, G.M. (2024). Planar Motion Control of a Quadruped Robot. Synergetic Cooperation between Robots and Humans\u2014Proceedings of the CLAWAR 2023 Conference\u2014Volume 2, Springer.","DOI":"10.1007\/978-3-031-47272-5_15"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"2150016","DOI":"10.1142\/S021984362150016X","article-title":"A New Hybrid Kinematic\/Dynamic Whole-Body Control for Humanoid Robots with Real-Time Experiments","volume":"18","author":"Galdeano","year":"2021","journal-title":"Int. J. Humanoid Robot."},{"key":"ref_36","unstructured":"Youssef, E.S.E., Tokhi, M.O., Silva, M.F., and Rincon, L.M. (2024). Locosim: An Open-Source Cross-Platform Robotics Framework. Synergetic Cooperation between Robots and Humans, Springer."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Carpentier, J., Saurel, G., Buondonno, G., Mirabel, J., Lamiraux, F., Stasse, O., and Mansard, N. (2019, January 14\u201316). The Pinocchio C++ Library: A Fast and Flexible Implementation of Rigid Body Dynamics Algorithms and Their Analytical Derivatives. Proceedings of the 2019 IEEE\/SICE International Symposium on System Integration (SII), Paris, France.","DOI":"10.1109\/SII.2019.8700380"},{"key":"ref_38","unstructured":"Spong, M.W., Hutchinson, S., and Vidyasagar, M. (2006). Robot Modeling and Control, John Wiley & Sons."},{"key":"ref_39","unstructured":"Farin, G. (2014). Curves and Surfaces for Computer-Aided Geometric Design: A Practical Guide, Elsevier."},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Zhang, S., Hou, Q., Zhang, X., Wu, X., and Wang, H. (2023). A Novel Vectorized Curved Road Representation Based Aerial Guided Unmanned Vehicle Trajectory Planning. Sensors, 23.","DOI":"10.3390\/s23167305"},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Nguyen, N.T., Gangavarapu, P.T., Kompe, N.F., Schildbach, G., and Ernst, F. (2023). Navigation with Polytopes: A Toolbox for Optimal Path Planning with Polytope Maps and B-spline Curves. Sensors, 23.","DOI":"10.3390\/s23073532"},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Benko Loknar, M., Klan\u010dar, G., and Bla\u017ei\u010d, S. (2023). Minimum-Time Trajectory Generation for Wheeled Mobile Systems Using B\u00e9zier Curves with Constraints on Velocity, Acceleration and Jerk. Sensors, 23.","DOI":"10.3390\/s23041982"},{"key":"ref_43","doi-asserted-by":"crossref","unstructured":"Wang, X., Jiang, P., Li, D., and Sun, T. (2017). Curvature Continuous and Bounded Path Planning for Fixed-Wing UAVs. Sensors, 17.","DOI":"10.3390\/s17092155"},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Jiao, J., Cao, Z., Zhao, P., Liu, X., and Tan, M. (2013, January 12\u201314). Bezier curve based path planning for a mobile manipulator in unknown environments. Proceedings of the 2013 IEEE International Conference on Robotics and Biomimetics (ROBIO), Shenzhen, China.","DOI":"10.1109\/ROBIO.2013.6739739"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"172988142092004","DOI":"10.1177\/1729881420920046","article-title":"Dual-optimization trajectory planning based on parametric curves for a robot manipulator","volume":"17","author":"Kuo","year":"2020","journal-title":"Int. J. Adv. Robot. Syst."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1186\/s10033-020-00491-x","article-title":"Obstacle Avoidance and Multitarget Tracking of a Super Redundant Modular Manipulator Based on Bezier Curve and Particle Swarm Optimization","volume":"33","author":"Chen","year":"2020","journal-title":"Chin. J. Mech. Eng."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"49","DOI":"10.1177\/027836498400300205","article-title":"The Gaits of Bipedal and Quadrupedal Animals","volume":"3","author":"Alexander","year":"1984","journal-title":"Int. J. Robot. Res."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"152","DOI":"10.1109\/TRO.2004.835448","article-title":"Omnidirectional static walking of a quadruped robot","volume":"21","author":"Ma","year":"2005","journal-title":"IEEE Trans. Robot."},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Zhang, L., Ma, S., and Inoue, K. (2006, January 9\u201315). Several Insights into Omnidirectional Static Walking of a Quadruped Robot on a slope. Proceedings of the 2006 IEEE\/RSJ International Conference on Intelligent Robots and Systems, Beijing, China.","DOI":"10.1109\/IROS.2006.281667"},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Aeini, A., Pourassad, M., Haghjoo, M.R., and Taghizadeh, M. (2022, January 2\u20133). Trotting Gait Planning and Modeling of a Quadruped Robot. Proceedings of the 2022 8th International Conference on Control, Instrumentation and Automation (ICCIA), Tehran, Iran.","DOI":"10.1109\/ICCIA54998.2022.9737167"},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Hildebrand, M. (1985). Chapter 3. Walking and Running. Functional Vertebrate Morphology, Harvard University Press.","DOI":"10.4159\/harvard.9780674184404.c3"},{"key":"ref_52","unstructured":"Luca, A.D., and Oriolo, G. (1994, January 8\u201313). Local incremental planning for nonholonomic mobile robots. Proceedings of the 1994 IEEE International Conference on Robotics and Automation, San Diego, CA, USA."},{"key":"ref_53","unstructured":"Sharbafi, M.A., and Seyfarth, A. (2017). Chapter 4\u2014Control of Motion and Compliance. Bioinspired Legged Locomotion, Butterworth-Heinemann."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/24\/12\/3825\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,11,21]],"date-time":"2024-11-21T20:02:55Z","timestamp":1732219375000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/24\/12\/3825"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,6,13]]},"references-count":53,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2024,6]]}},"alternative-id":["s24123825"],"URL":"https:\/\/doi.org\/10.3390\/s24123825","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2024,6,13]]}}}