{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,20]],"date-time":"2024-09-20T17:06:45Z","timestamp":1726852005591},"reference-count":146,"publisher":"MDPI AG","issue":"10","license":[{"start":{"date-parts":[[2024,5,7]],"date-time":"2024-05-07T00:00:00Z","timestamp":1715040000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"National Natural Science Foundation of China","award":["12272342,","11972325","22004108","12002311"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Machine learning and deep learning technologies are rapidly advancing the capabilities of sensing technologies, bringing about significant improvements in accuracy, sensitivity, and adaptability. These advancements are making a notable impact across a broad spectrum of fields, including industrial automation, robotics, biomedical engineering, and civil infrastructure monitoring. The core of this transformative shift lies in the integration of artificial intelligence (AI) with sensor technology, focusing on the development of efficient algorithms that drive both device performance enhancements and novel applications in various biomedical and engineering fields. This review delves into the fusion of ML\/DL algorithms with sensor technologies, shedding light on their profound impact on sensor design, calibration and compensation, object recognition, and behavior prediction. Through a series of exemplary applications, the review showcases the potential of AI algorithms to significantly upgrade sensor functionalities and widen their application range. Moreover, it addresses the challenges encountered in exploiting these technologies for sensing applications and offers insights into future trends and potential advancements.<\/jats:p>","DOI":"10.3390\/s24102958","type":"journal-article","created":{"date-parts":[[2024,5,7]],"date-time":"2024-05-07T13:03:38Z","timestamp":1715087018000},"page":"2958","source":"Crossref","is-referenced-by-count":3,"title":["AI-Driven Sensing Technology: Review"],"prefix":"10.3390","volume":"24","author":[{"given":"Long","family":"Chen","sequence":"first","affiliation":[{"name":"Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Chenbin","family":"Xia","sequence":"additional","affiliation":[{"name":"Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Zhehui","family":"Zhao","sequence":"additional","affiliation":[{"name":"Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China"}]},{"given":"Haoran","family":"Fu","sequence":"additional","affiliation":[{"name":"Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3847-2284","authenticated-orcid":false,"given":"Yunmin","family":"Chen","sequence":"additional","affiliation":[{"name":"Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China"}]}],"member":"1968","published-online":{"date-parts":[[2024,5,7]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Spinelle, L., Gerboles, M., Kok, G., Persijn, S., and Sauerwald, T. (2017). Review of portable and low-cost sensors for the ambient air monitoring of benzene and other volatile organic compounds. Sensors, 17.","DOI":"10.3390\/s17071520"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"2104686","DOI":"10.1002\/adfm.202104686","article-title":"Recent Progress in Essential Functions of Soft Electronic Skin","volume":"31","author":"Chen","year":"2021","journal-title":"Adv. Funct. Mater."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1186\/s11671-019-3084-x","article-title":"Mini Review on Flexible and Wearable Electronics for Monitoring Human Health Information","volume":"14","author":"Gu","year":"2019","journal-title":"Nanoscale Res. Lett."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"465","DOI":"10.1021\/acssensors.2c02642","article-title":"Flexible Sweat Sensors: From Films to Textiles","volume":"8","author":"Luo","year":"2023","journal-title":"ACS Sens."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Gu, J., Shen, Y., Tian, S., Xue, Z., and Meng, X. (2023). Recent Advances in Nanowire-Based Wearable Physical Sensors. Biosensors, 13.","DOI":"10.3390\/bios13121025"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"2300550","DOI":"10.1002\/admi.202300550","article-title":"Bioelectric Interface Technologies in Cells and Organoids","volume":"10","author":"Xue","year":"2023","journal-title":"Adv. Mater. Interfaces"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"234","DOI":"10.1016\/j.eng.2018.11.027","article-title":"The State of the Art of Data Science and Engineering in Structural Health Monitoring","volume":"5","author":"Bao","year":"2019","journal-title":"Engineering"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"e2296.1","DOI":"10.1002\/stc.2296","article-title":"Convolutional Neural Network-based Data Anomaly Detection Method Using Multiple Information for Structural Health Monitoring","volume":"26","author":"Tang","year":"2019","journal-title":"Struct. Control Health Monit."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"859","DOI":"10.1038\/nmat2834","article-title":"Highly sensitive flexible pressure sensors with microstructured rubber dielectric layers","volume":"9","author":"Bao","year":"2010","journal-title":"Nat. Mater."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"209","DOI":"10.1038\/s41467-019-14054-9","article-title":"Graded intrafillable architecture-based iontronic pressure sensor with ultra-broad-range high sensitivity","volume":"11","author":"Bai","year":"2020","journal-title":"Nat. Commun."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"6922","DOI":"10.1126\/sciadv.abm6922","article-title":"Assembly of complex 3D structures and electronics on curved surfaces","volume":"8","author":"Xue","year":"2022","journal-title":"Sci. Adv."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"051005","DOI":"10.1115\/1.4064267","article-title":"Design of Porous Partition Elastomer Substrates for the Island\u2013Bridge Structures in Stretchable Inorganic Electronics","volume":"91","author":"Gao","year":"2024","journal-title":"ASME J. Appl. Mech."},{"key":"ref_13","first-page":"9","article-title":"Electrochemical paper-based devices: Sensing approaches and progress toward practical applications","volume":"2","author":"Eka","year":"2020","journal-title":"Lab Chip"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"109112","DOI":"10.1016\/j.measurement.2021.109112","article-title":"Potentiometric enzyme biosensor for rapid determination of formaldehyde based on succinimide-functionalized polyacrylate ion-selective membrane","volume":"175","author":"Nurlely","year":"2021","journal-title":"Meas. J. Int. Meas. Confed."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"795","DOI":"10.1002\/adma.201503825","article-title":"Nanostructured Materials for Room-Temperature Gas Sensors","volume":"28","author":"Zhang","year":"2016","journal-title":"Adv. Mater."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"e2005846","DOI":"10.1002\/adma.202005846","article-title":"Sensing with MXenes: Progress and Prospects","volume":"33","author":"Ho","year":"2021","journal-title":"Adv. Mater."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1016\/j.sna.2019.06.020","article-title":"Design and Applications of MEMS Flow Sensors: A Review","volume":"295","author":"Ejeian","year":"2019","journal-title":"Sens. Actuators Phys."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"92","DOI":"10.1038\/s41378-021-00318-2","article-title":"Stretchable and Anti-Impact Iontronic Pressure Sensor with an Ultrabroad Linear Range for Biophysical Monitoring and Deep Learning-Aided Knee Rehabilitation","volume":"7","author":"Xu","year":"2021","journal-title":"Microsyst. Nanoeng."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"64","DOI":"10.1109\/TITS.2020.3023957","article-title":"Sensors and AI Techniques for Situational Awareness in Autonomous Ships: A Review","volume":"23","author":"Sarang","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"48572","DOI":"10.1109\/ACCESS.2019.2909530","article-title":"Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges","volume":"7","author":"Shakhatreh","year":"2019","journal-title":"IEEE Access"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1038\/s41586-020-03153-z","article-title":"Self-powered soft robot in the Mariana Trench","volume":"591","author":"Guorui","year":"2021","journal-title":"Nature"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Yuan, W., Dong, S., and Adelson, E.H. (2017). GelSight: High-resolution robot tactile sensors for estimating geometry and force. Sensors, 17.","DOI":"10.3390\/s17122762"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"4373","DOI":"10.1002\/adma.201504366","article-title":"Monitoring of Vital Signs with Flexible and Wearable Medical Devices","volume":"28","author":"Yasser","year":"2016","journal-title":"Adv. Mater."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"eabm3785","DOI":"10.1126\/sciadv.abm3785","article-title":"Highly-integrated, miniaturized, stretchable electronic systems based on stacked multilayer network materials","volume":"8","author":"Song","year":"2022","journal-title":"Sci. Adv."},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.coldregions.2009.07.007","article-title":"Construction on permafrost foundations: Lessons learned from the Qinghai\u2013Tibet railroad","volume":"59","author":"Ma","year":"2009","journal-title":"Cold Reg. Sci. Technol."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"664","DOI":"10.1038\/s41928-020-00501-9","article-title":"Near-sensor and in-sensor computing","volume":"3","author":"Zhou","year":"2020","journal-title":"Nat. Electron."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"2000261","DOI":"10.1002\/advs.202000261","article-title":"Machine Learning Glove Using Self-Powered Conductive Superhydrophobic Triboelectric Textile for Gesture Recognition in VR\/AR Applications","volume":"7","author":"Wen","year":"2020","journal-title":"Adv. Sci."},{"key":"ref_28","first-page":"1904020","article-title":"Flexible Piezoelectric Acoustic Sensors and Machine Learning for Speech Processing","volume":"35","author":"Young","year":"2020","journal-title":"Adv. Mater."},{"key":"ref_29","unstructured":"Muhammad, S., Stephan, B., Hans, S., Paul, J.M.H., and Ozlem, D.I. (2015, January 23\u201327). Towards Detection of Bad Habits by Fusing Smartphone and Smartwatch Sensors. Proceedings of the 2015 IEEE International Conference on Pervasive Computing and Communication Workshops (PerCom Workshops), St. Louis, MO, USA."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"1693","DOI":"10.1109\/TIM.2017.2669947","article-title":"Multisensor Feature Fusion for Bearing Fault Diagnosis Using Sparse Autoencoder and Deep Belief Network","volume":"7","author":"Chen","year":"2017","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"12730","DOI":"10.1109\/TIE.2020.3047040","article-title":"A Low-Cost Tire Pressure Loss Detection Framework Using Machine Learning","volume":"12","author":"Wei","year":"2021","journal-title":"IEEE Trans. Ind. Electron."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"2104178","DOI":"10.1002\/adma.202104178","article-title":"Ambulatory Cardiovascular Monitoring Via a Machine-Learning-Assisted Textile Triboelectric Sensor","volume":"41","author":"Fang","year":"2021","journal-title":"Adv. Mater."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"107632","DOI":"10.1016\/j.nanoen.2022.107632","article-title":"Flexible Sensors and Machine Learning for Heart Monitoring","volume":"102","author":"Kwon","year":"2022","journal-title":"Nano Energy"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"353","DOI":"10.1016\/j.snb.2015.02.025","article-title":"Feature Selection and Analysis on Correlated Gas Sensor Data with Recursive Feature Elimination","volume":"212","author":"Yan","year":"2015","journal-title":"Sens. Actuators B Chem."},{"key":"ref_35","first-page":"685","article-title":"Machine Learning Techniques in Wireless Sensor Networks: Algorithms, Strategies, and Applications","volume":"11","author":"Faiz","year":"2023","journal-title":"Int. J. Intell. Syst. Appl. Eng."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"429","DOI":"10.1038\/s41928-021-00585-x","article-title":"An Artificial Neural Tactile Sensing System","volume":"4","author":"Chun","year":"2021","journal-title":"Nat. Electron."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"e1906269","DOI":"10.1002\/adma.201906269","article-title":"Parallel Signal Processing of a Wireless Pressure-Sensing Platform Combined with Machine-Learning-Based Cognition, Inspired by the Human Somatosensory System","volume":"32","author":"Lee","year":"2020","journal-title":"Adv. Mater."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"6872","DOI":"10.1109\/JSEN.2019.2912968","article-title":"CNN-Based Methods for Object Recognition with High-Resolution Tactile Sensors","volume":"19","author":"Gandarias","year":"2019","journal-title":"IEEE Sens. J."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1007\/s40820-023-01013-9","article-title":"Machine Learning-Enhanced Flexible Mechanical Sensing","volume":"15","author":"Wang","year":"2023","journal-title":"Nano-Micro Lett."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1016\/j.snb.2012.01.074","article-title":"Chemical Gas Sensor Drift Compensation Using Classifier Ensembles","volume":"166\u2013167","author":"Vergara","year":"2012","journal-title":"Sens. Actuators B Chem."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"1225","DOI":"10.1126\/science.adf3824","article-title":"Programming 3D Curved Mesosurfaces Using Microlattice Designs","volume":"379","author":"Cheng","year":"2023","journal-title":"Science"},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1038\/s41928-020-00510-8","article-title":"A Wearable Biosensing System with In-Sensor Adaptive Machine Learning for Hand Gesture Recognition","volume":"4","author":"Moin","year":"2020","journal-title":"Nat. Electron."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"1316","DOI":"10.1002\/adma.201404794","article-title":"Eardrum-Inspired Active Sensors for Self-Powered Cardiovascular System Characterization and Throat-Attached Anti-Interference Voice Recognition","volume":"27","author":"Yang","year":"2015","journal-title":"Adv. Mater."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"874","DOI":"10.1109\/19.368082","article-title":"Artificial Neural Network-Based Nonlinearity Estimation of Pressure Sensors","volume":"43","author":"Patra","year":"1994","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"2100634","DOI":"10.1002\/admt.202100634","article-title":"Analytical Model of Micropyramidal Capacitive Pressure Sensors and Machine-Learning-Assisted Design","volume":"6","author":"Ma","year":"2021","journal-title":"Adv. Mater. Technol."},{"key":"ref_46","first-page":"58","article-title":"Leveraging Machine Learning for Arrays of Soft Sensors","volume":"12482","author":"Rosset","year":"2023","journal-title":"Electroact. Polym. Actuators Devices (EAPAD) XXV"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"728","DOI":"10.1016\/j.apm.2021.01.006","article-title":"Deep Learning for Simultaneous Measurements of Pressure and Temperature Using Arch Resonators","volume":"93","author":"Ghommem","year":"2021","journal-title":"Appl. Math. Model."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"6529","DOI":"10.1021\/acs.analchem.0c00137","article-title":"Finding Hidden Signals in Chemical Sensors Using Deep Learning","volume":"9","author":"Cho","year":"2020","journal-title":"Anal. Chem."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"784","DOI":"10.1109\/JLT.2022.3220543","article-title":"Deep Learning Assisted Pressure Sensing Based on Sagnac Interferometry Realized by Side-Hole Fiber","volume":"41","author":"Mei","year":"2023","journal-title":"J. Light. Technol."},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Cao, Z., Lu, Z., Zhang, Q., Luo, D., Chen, J., Tian, Q., Liu, Z., and Dong, Y. (2021, January 7\u20139). Flexible Optical Pressure Sensor with High Spatial Resolution Based on Deep Learning. Proceedings of the Eighth Symposium on Novel Photoelectronic Detection Technology and Applications, Kunming, China.","DOI":"10.1117\/12.2623649"},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Sarkar, S., Inupakutika, D., Banerjee, M., Tarhani, M., Eghbal, M.K., and Shadaram, M. (October, January 28). Discrimination of Strain and Temperature Effects on FBG-Based Sensor Using Machine Learning. Proceedings of the 2020 IEEE Photonics Conference (IPC), Vancouver, BC, Canada.","DOI":"10.1109\/IPC47351.2020.9252515"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"876","DOI":"10.1109\/LPT.2021.3055216","article-title":"Machine Learning Methods for Discriminating Strain and Temperature Effects on FBG-Based Sensors","volume":"16","author":"Sarkar","year":"2021","journal-title":"IEEE Photonics Technol. Lett."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"7792","DOI":"10.1109\/JSEN.2022.3156595","article-title":"Accurate Strain Extraction via Kernel Extreme Learning Machine for Fiber Bragg Grating Sensor","volume":"8","author":"Xu","year":"2022","journal-title":"IEEE Sens. J."},{"key":"ref_54","first-page":"1","article-title":"Random and Coherent Noise Suppression in DAS-VSP Data by Using a Supervised Deep Learning Method","volume":"19","author":"Dong","year":"2022","journal-title":"IEEE Geosci. Remote. Sens. Lett."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"288","DOI":"10.1109\/TCYB.2016.2633306","article-title":"Learning Domain-Invariant Subspace Using Domain Features and Independence Maximization","volume":"48","author":"Ke","year":"2018","journal-title":"IEEE Trans. Cybern."},{"key":"ref_56","doi-asserted-by":"crossref","unstructured":"Ji, T., Pang, Q., and Liu, X. (2006, January 20\u201323). An Intelligent Pressure Sensor Using Rough Set Neural Networks. Proceedings of the 2006 IEEE International Conference on Information Acquisition, Veihai, China.","DOI":"10.1109\/ICIA.2006.305816"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"175","DOI":"10.1016\/S0019-0578(00)00009-4","article-title":"Auto-Calibration and -Compensation of a Capacitive Pressure Sensor Using Multilayer Perceptrons","volume":"2","author":"Patra","year":"2000","journal-title":"ISA Trans."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"1509","DOI":"10.3390\/s7081509","article-title":"Self-Calibration and Optimal Response in Intelligent Sensors Design Based on Artificial Neural Networks","volume":"7","author":"Rivera","year":"2007","journal-title":"Sensors"},{"key":"ref_59","doi-asserted-by":"crossref","unstructured":"Chang, Y., Cui, X., Hou, G., and Jin, Y. (2020, January 12\u201315). Calibration of the Pressure Sensor Device with the Extreme Learning Machine. Proceedings of the 2020 21st International Conference on Electronic Packaging Technology (ICEPT), Guangzhou, China.","DOI":"10.1109\/ICEPT50128.2020.9202675"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1109\/TIM.2006.887321","article-title":"Application of an ANFIS Algorithm to Sensor Data Processing","volume":"56","author":"Depari","year":"2007","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"12174","DOI":"10.3390\/s140712174","article-title":"A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature Compensation System","volume":"7","author":"Zhou","year":"2014","journal-title":"Sensors"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1016\/j.microrel.2005.04.008","article-title":"Temperature Compensation of Piezoresistive Micro-Machined Porous Silicon Pressure Sensor by ANN","volume":"46","author":"Pramanik","year":"2006","journal-title":"Microelectron. Reliab."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"282","DOI":"10.1016\/j.microrel.2009.09.012","article-title":"ANN Based CMOS ASIC Design for Improved Temperature-Drift Compensation of Piezoresistive Micro-Machined High Resolution Pressure Sensor","volume":"50","author":"Futane","year":"2010","journal-title":"Microelectron. Reliab."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"1796","DOI":"10.1002\/mop.25326","article-title":"Four-Channel Fiber Loop Ring-down Pressure Sensor with Temperature Compensation Based on Neural Networks","volume":"8","author":"Gao","year":"2010","journal-title":"Microw. Opt. Technol. Lett."},{"key":"ref_65","doi-asserted-by":"crossref","unstructured":"Chen, H., Aggarwal, P., Taha, T.M., and Chodavarapu, V.P. (2018, January 23\u201326). Improving Inertial Sensor by Reducing Errors Using Deep Learning Methodology. Proceedings of the NAECON 2018\u2014IEEE National Aerospace and Electronics Conference, Dayton, OH, USA.","DOI":"10.1109\/NAECON.2018.8556718"},{"key":"ref_66","unstructured":"Kim, D.E., Kim, K.S., Park, J.H., Ailing, L., and Lee, J.M. (2018, January 17\u201320). Stable Grasping of Objects using Air Pressure Sensors on a Robot Hand. Proceedings of the 2018 18th International Conference on Control, Automation and Systems (ICCAS), PyeongChang, Republic of Korea."},{"key":"ref_67","first-page":"013001","article-title":"Comparison of Enhancement Techniques Based on Neural Networks for Attenuated Voice Signal Captured by Flexible Vibration Sensors on Throats","volume":"1","author":"Zheng","year":"2022","journal-title":"Nanotechnol. Precis. Eng."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"611","DOI":"10.1089\/soro.2018.0086","article-title":"A Deformable Interface for Human Touch Recognition Using Stretchable Carbon Nanotube Dielectric Elastomer Sensors and Deep Neural Networks","volume":"6","author":"Larson","year":"2019","journal-title":"Soft Robot."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"1900178","DOI":"10.1002\/aisy.201900178","article-title":"Adaptive Calibration of Soft Sensors Using Optimal Transportation Transfer Learning for Mass Production and Long-Term Usage","volume":"6","author":"Kim","year":"2020","journal-title":"Adv. Intell. Syst."},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"2","DOI":"10.1038\/s41528-023-00289-6","article-title":"A Soft Magnetoelectric Finger for Robots\u2019 Multidirectional Tactile Perception in Non-Visual Recognition Environments","volume":"8","author":"Xu","year":"2024","journal-title":"NPJ Flex. Electron."},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"2208184","DOI":"10.1002\/adma.202208184","article-title":"Heterogeneous Structure Omnidirectional Strain Sensor Arrays With Cognitively Learned Neural Networks","volume":"13","author":"Lee","year":"2023","journal-title":"Adv. Mater."},{"key":"ref_72","doi-asserted-by":"crossref","unstructured":"Kondratenko, Y., Atamanyuk, I., Sidenko, I., Kondratenko, G., and Sichevskyi, S. (2022). Machine Learning Techniques for Increasing Efficiency of the Robot\u2019s Sensor and Control Information Processing. Sensors, 3.","DOI":"10.3390\/s22031062"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"13284","DOI":"10.1109\/JSEN.2020.3003920","article-title":"A Tactile Sensor for an Anthropomorphic Robotic Fingertip Based on Pressure Sensing and Machine Learning","volume":"22","author":"Levins","year":"2020","journal-title":"IEEE Sens. J."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"8878","DOI":"10.1109\/JSEN.2019.2919492","article-title":"A Simple Robotic Fingertip Sensor Using Imaging and Shallow Neural Networks","volume":"19","author":"Xu","year":"2019","journal-title":"IEEE Sens. J."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"1900025","DOI":"10.1002\/aisy.201900025","article-title":"Soft Magnetic Skin for Continuous Deformation Sensing","volume":"1","author":"Hellebrekers","year":"2019","journal-title":"Adv. Intell. Syst."},{"key":"ref_76","doi-asserted-by":"crossref","unstructured":"Gandarias, J.M., Gomez-de-Gabriel, J.M., and Garcia-Cerezo, A. (November, January 29). Human and Object Recognition with a High-Resolution Tactile Sensor. Proceedings of the 2017 IEEE SENSORS, Glasgow, UK.","DOI":"10.1109\/ICSENS.2017.8234203"},{"key":"ref_77","unstructured":"Hongbin, L., Xiaojing, S., Thrishantha, N., Lakmal, D.S., and Kaspar, A. (2012, January 14\u201318). A Computationally Fast Algorithm for Local Contact Shape and Pose Classification Using a Tactile Array Sensor. Proceedings of the 2012 IEEE International Conference on Robotics and Automation, Saint Paul, MN, USA."},{"key":"ref_78","doi-asserted-by":"crossref","unstructured":"Casta\u00f1o, F., Beruvides, G., Haber, R.E., and Artu\u00f1edo, A. (2017). Obstacle Recognition Based on Machine Learning for On-Chip LiDAR Sensors in a Cyber-Physical System. Sensors, 9.","DOI":"10.20944\/preprints201708.0014.v1"},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"508","DOI":"10.1109\/TRO.2011.2127110","article-title":"Majority Voting: Material Classification by Tactile Sensing Using Surface Texture","volume":"27","author":"Jamali","year":"2011","journal-title":"IEEE Trans. Robot."},{"key":"ref_80","doi-asserted-by":"crossref","first-page":"986","DOI":"10.1021\/acsmaterialslett.0c00160","article-title":"Environment-Resilient Graphene Vibrotactile Sensitive Sensors for Machine Intelligence","volume":"8","author":"Yao","year":"2020","journal-title":"ACS Mater. Lett."},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"21","DOI":"10.1109\/JSEN.2003.820344","article-title":"An Optical-Fiber Sensor for Use in Water Systems Utilizing Digital Signal Processing Techniques and Artificial Neural Network Pattern Recognition","volume":"4","author":"King","year":"2004","journal-title":"IEEE Sens. J."},{"key":"ref_82","doi-asserted-by":"crossref","first-page":"28","DOI":"10.1038\/s41378-023-00499-y","article-title":"Multiplexed DNA-Functionalized Graphene Sensor with Artificial Intelligence-Based Discrimination Performance for Analyzing Chemical Vapor Compositions","volume":"9","author":"Hwang","year":"2023","journal-title":"Microsyst. Nanoeng."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1016\/S0165-9936(96)00061-1","article-title":"Electronic Noses\u2014Development and Future Prospects","volume":"9","author":"Craven","year":"1996","journal-title":"TrAC Trends Anal. Chem."},{"key":"ref_84","doi-asserted-by":"crossref","unstructured":"Zhan, C., He, J., Pan, M., and Luo, D. (2021). Component Analysis of Gas Mixture Based on One-Dimensional Convolutional Neural Network. Sensors, 21.","DOI":"10.3390\/s21020347"},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"15269","DOI":"10.1109\/JSEN.2021.3074402","article-title":"A Stretchable Gold Nanowire Sensor and Its Characterization Using Machine Learning for Motion Tracking","volume":"13","author":"Nguyen","year":"2021","journal-title":"IEEE Sens. J."},{"key":"ref_86","doi-asserted-by":"crossref","first-page":"979","DOI":"10.1109\/JBHI.2017.2734803","article-title":"Automatic Recognition of Activities of Daily Living Utilizing Insole-Based and Wrist-Worn Wearable Sensors","volume":"4","author":"Hegde","year":"2018","journal-title":"IEEE J. Biomed. Health Inform."},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"2646","DOI":"10.1038\/s41598-021-81284-7","article-title":"Head Motion Classification Using Thread-Based Sensor and Machine Learning Algorithm","volume":"11","author":"Jiang","year":"2021","journal-title":"Sci. Rep."},{"key":"ref_88","doi-asserted-by":"crossref","unstructured":"Anderson, W., Choffin, Z., Jeong, N., Callihan, M., Jeong, S., and Sazonov, E. (2022). Empirical Study on Human Movement Classification Using Insole Footwear Sensor System and Machine Learning. Sensors, 22.","DOI":"10.3390\/s22072743"},{"key":"ref_89","doi-asserted-by":"crossref","unstructured":"Kobsar, D., and Ferber, R. (2018). Wearable Sensor Data to Track Subject-Specific Movement Patterns Related to Clinical Outcomes Using a Machine Learning Approach. Sensors, 9.","DOI":"10.3390\/s18092828"},{"key":"ref_90","doi-asserted-by":"crossref","unstructured":"Islam, M., Tabassum, M., Nishat, M.M., Faisal, F., and Hasan, M.S. (2022, January 19\u201320). Real-Time Clinical Gait Analysis and Foot Anomalies Detection Using Pressure Sensors and Convolutional Neural Network. Proceedings of the 2022 7th International Conference on Business and Industrial Research (ICBIR), Bangkok, Thailand.","DOI":"10.1109\/ICBIR54589.2022.9786472"},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"5147","DOI":"10.1038\/s41467-019-13166-6","article-title":"Flexible and Durable Wood-Based Triboelectric Nanogenerators for Self-Powered Sensing in Athletic Big Data Analytics","volume":"10","author":"Luo","year":"2019","journal-title":"Nat. Commun."},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"307","DOI":"10.1016\/j.future.2017.11.029","article-title":"A Robust Human Activity Recognition System Using Smartphone Sensors and Deep Learning","volume":"81","author":"Hassan","year":"2018","journal-title":"Future Gener. Comput. Syst."},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"1803684","DOI":"10.1002\/adfm.201803684","article-title":"A Wrinkled PEDOT: PSS Film Based Stretchable and Transparent Triboelectric Nanogenerator for Wearable Energy Harvesters and Active Motion Sensors","volume":"28","author":"Wen","year":"2018","journal-title":"Adv. Funct. Mater."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"10159","DOI":"10.1109\/JSEN.2023.3263231","article-title":"Smart Suspenders with Sensors and Machine Learning for Human Activity Monitoring","volume":"23","author":"Mani","year":"2023","journal-title":"IEEE Sens. J."},{"key":"ref_95","doi-asserted-by":"crossref","first-page":"0157","DOI":"10.34133\/research.0157","article-title":"A Deep Learning-Enabled Skin-Inspired Pressure Sensor for Complicated Recognition Tasks with Ultralong Life","volume":"6","author":"Xie","year":"2023","journal-title":"Research"},{"key":"ref_96","doi-asserted-by":"crossref","unstructured":"Gholami, M., Ejupi, A., Rezaei, A., Ferrone, A., and Menon, C. (2018, January 26\u201329). Estimation of Knee Joint Angle Using a Fabric-Based Strain Sensor and Machine Learning: A Preliminary Investigation. Proceedings of the 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Enschede, The Netherlands.","DOI":"10.1109\/BIOROB.2018.8487199"},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1038\/s41928-020-0428-6","article-title":"Sign-to-speech translation using machine-learning-assisted stretchable sensor arrays","volume":"3","author":"Zhou","year":"2020","journal-title":"Nat. Electron."},{"key":"ref_98","doi-asserted-by":"crossref","unstructured":"Krishnan, K.S., Saha, A., Ramachandran, S., and Kumar, S. (2017, January 5\u20137). Recognition of Human Arm Gestures Using Myo Armband for the Game of Hand Cricket. Proceedings of the 2017 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS), Ottawa, ON, Canada.","DOI":"10.1109\/IRIS.2017.8250154"},{"key":"ref_99","doi-asserted-by":"crossref","unstructured":"Gonzalez-Cely, A.X., Bastos-Filho, T., and Diaz, C.A.R. (2022, January 4\u20136). Wheelchair Posture Classification Based on POF Pressure Sensors and Machine Learning Algorithms. Proceedings of the 2022 IEEE Latin American Electron Devices Conference (LAEDC), Cancun, Mexico.","DOI":"10.1109\/LAEDC54796.2022.9907773"},{"key":"ref_100","doi-asserted-by":"crossref","unstructured":"Roh, J., Park, H.J., Lee, K.J., Hyeong, J., Kim, S., and Lee, B. (2018). Sitting Posture Monitoring System Based on a Low-Cost Load Cell Using Machine Learning. Sensors, 18.","DOI":"10.3390\/s18010208"},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"10347","DOI":"10.1021\/acsnano.1c02567","article-title":"Hetero-Dimensional 2D Ti3C2Tx MXene and 1D Graphene Nanoribbon Hybrids for Machine Learning-Assisted Pressure Sensors","volume":"15","author":"Lee","year":"2021","journal-title":"ACS Nano"},{"key":"ref_102","doi-asserted-by":"crossref","unstructured":"Zemp, R., Tanadini, M., Pl\u00fcss, S., Schn\u00fcriger, K., Singh, N.B., Taylor, W.R., and Lorenzetti, S. (2016). Application of Machine Learning Approaches for Classifying Sitting Posture Based on Force and Acceleration Sensors. BioMed Res. Int., 2016.","DOI":"10.1155\/2016\/5978489"},{"key":"ref_103","first-page":"338","article-title":"In-Bed Posture Classification from Pressure Mat Sensors for the Prevention of Pressure Ulcers Using Convolutional Neural Networks","volume":"8","author":"Gil","year":"2020","journal-title":"Bioinform. Biomed. Eng."},{"key":"ref_104","doi-asserted-by":"crossref","unstructured":"Bourahmoune, K., and Amagasa, T. (2019, January 10\u201316). AI-Powered Posture Training: Application of Machine Learning in Sitting Posture Recognition Using the LifeChair Smart Cushion. Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence AI for Improving Human Well-Being, Macao, China.","DOI":"10.24963\/ijcai.2019\/805"},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"345502","DOI":"10.1088\/1361-6528\/ac66ec","article-title":"Large-Area Flexible MWCNT\/PDMS Pressure Sensor for Ergonomic Design with Aid of Deep Learning","volume":"33","author":"Zhong","year":"2022","journal-title":"Nanotechnology"},{"key":"ref_106","doi-asserted-by":"crossref","unstructured":"Green, C., Bouchard, M., Goubran, R., Robillard, R., Higginson, C., Lee, E., and Knoefel, F. (2023, January 14\u201316). Sleep-Wake and Body Position Classification with Deep Learning Using Pressure Sensor Mat Measurements. Proceedings of the 2023 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Jeju, Republic of Korea.","DOI":"10.1109\/MeMeA57477.2023.10171884"},{"key":"ref_107","doi-asserted-by":"crossref","unstructured":"Huang, K.-H., Tan, F., Wang, T.-D., and Yang, Y.-J. (2019). A Highly Sensitive Pressure-Sensing Array for Blood Pressure Estimation Assisted by Machine-Learning Techniques. Sensors, 19.","DOI":"10.3390\/s19040848"},{"key":"ref_108","doi-asserted-by":"crossref","unstructured":"Gudi\u00f1o-Ochoa, A., Garc\u00eda-Rodr\u00edguez, J.A., Ochoa-Ornelas, R., Cuevas-Ch\u00e1vez, J.I., and S\u00e1nchez-Arias, D.A. (2024). Noninvasive Diabetes Detection through Human Breath Using TinyML-Powered E-Nose. Sensors, 24.","DOI":"10.3390\/s24041294"},{"key":"ref_109","doi-asserted-by":"crossref","first-page":"199","DOI":"10.1038\/s42256-021-00307-0","article-title":"Common pitfalls and recommendations for using machine learning to detect and prognosticate for COVID-19 using chest radiographs and CT scans","volume":"3","author":"Roberts","year":"2021","journal-title":"Nat. Mach. Intell."},{"key":"ref_110","doi-asserted-by":"crossref","first-page":"105887","DOI":"10.1016\/j.nanoen.2021.105887","article-title":"Triboelectric Nanogenerator Based Self-Powered Sensor for Artificial Intelligence","volume":"84","author":"Zhou","year":"2021","journal-title":"Nano Energy"},{"key":"ref_111","doi-asserted-by":"crossref","first-page":"216","DOI":"10.1016\/j.mattod.2018.01.006","article-title":"Keystroke Dynamics Enabled Authentication and Identification using Triboelectric Nanogenerator Array","volume":"21","author":"Wu","year":"2018","journal-title":"Mater. Today"},{"key":"ref_112","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1021\/nn506832w","article-title":"Personalized Keystroke Dynamics for Self-Powered Human\u2013Machine Interfacing","volume":"9","author":"Chen","year":"2015","journal-title":"ACS Nano"},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"105174","DOI":"10.1016\/j.nanoen.2020.105174","article-title":"Multilanguage-handwriting self-powered recognition based on triboelectric nanogenerator enabled machine learning","volume":"77","author":"Zhang","year":"2020","journal-title":"Nano Energy"},{"key":"ref_114","doi-asserted-by":"crossref","first-page":"4609","DOI":"10.1038\/s41467-020-18471-z","article-title":"Deep Learning Enabled Smart Mats as a Scalable Floor Monitoring System","volume":"11","author":"Shi","year":"2020","journal-title":"Nat. Commun."},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"658","DOI":"10.1016\/j.nanoen.2018.09.030","article-title":"Machine Learning-Based Self-Powered Acoustic Sensor for Speaker Recognition","volume":"53","author":"Han","year":"2018","journal-title":"Nano Energy"},{"key":"ref_116","doi-asserted-by":"crossref","first-page":"8333","DOI":"10.1021\/acsami.3c16165","article-title":"Optical Microfiber Intelligent Sensor: Wearable Cardiorespiratory and Behavior Monitoring with a Flexible Wave-Shaped Polymer Optical Microfiber","volume":"16","author":"Zhuo","year":"2024","journal-title":"ACS Appl. Mater. Interfaces"},{"key":"ref_117","doi-asserted-by":"crossref","unstructured":"Li, C., S\u00e1nchez, R.-V., Zurita, G., Cerrada, M., and Cabrera, D. (2016). Fault Diagnosis for Rotating Machinery Using Vibration Measurement Deep Statistical Feature Learning. Sensors, 16.","DOI":"10.3390\/s16060895"},{"key":"ref_118","first-page":"9306205","article-title":"Bearing Fault Diagnosis Based on Deep Belief Network and Multisensor Information Fusion","volume":"2016","author":"Tao","year":"2016","journal-title":"Shock Vib."},{"key":"ref_119","doi-asserted-by":"crossref","first-page":"8057","DOI":"10.3390\/s140508057","article-title":"Human Movement Detection and Identification Using Pyroelectric Infrared Sensors","volume":"14","author":"Yun","year":"2014","journal-title":"Sensors"},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"5079256","DOI":"10.1155\/2023\/5079256","article-title":"Dual-Mode Pressure Sensor Integrated with Deep Learning Algorithm for Joint State Monitoring in Tennis Motion","volume":"2023","author":"Gao","year":"2023","journal-title":"J. Sens."},{"key":"ref_121","doi-asserted-by":"crossref","first-page":"24","DOI":"10.1038\/s41378-022-00358-2","article-title":"Wearable Multimode Sensor with a Seamless Integrated Structure for Recognition of Different Joint Motion States with the Assistance of a Deep Learning Algorithm","volume":"8","author":"Wen","year":"2022","journal-title":"Microsyst. Nanoeng."},{"key":"ref_122","doi-asserted-by":"crossref","first-page":"8126","DOI":"10.1021\/acsanm.1c01378","article-title":"Epidermal Graphene Sensors and Machine Learning for Estimating Swallowed Volume","volume":"4","author":"Polat","year":"2021","journal-title":"ACS Appl. Nano Mater."},{"key":"ref_123","doi-asserted-by":"crossref","unstructured":"Orii, H., Tsuji, S., Kouda, T., and Kohama, T. (2017, January 22\u201325). Tactile Texture Recognition Using Convolutional Neural Networks for Time-Series Data of Pressure and 6-Axis Acceleration Sensor. Proceedings of the 2017 IEEE International Conference on Industrial Technology (ICIT), Toronto, ON, Canada.","DOI":"10.1109\/ICIT.2017.7915511"},{"key":"ref_124","doi-asserted-by":"crossref","first-page":"7","DOI":"10.1016\/j.sna.2019.02.032","article-title":"Using a Convolutional Neural Network to Construct a Pen-Type Tactile Sensor System for Roughness Recognition","volume":"291","author":"Tsuji","year":"2019","journal-title":"Sens. Actuators A Phys."},{"key":"ref_125","doi-asserted-by":"crossref","unstructured":"Thuruthel, T.G., and Iida, F. (2023, January 3\u20137). Multimodel Sensor Fusion for Learning Rich Models for Interacting Soft Robots. Proceedings of the 2023 IEEE International Conference on Soft Robotics (RoboSoft), Singapore.","DOI":"10.1109\/RoboSoft55895.2023.10121992"},{"key":"ref_126","doi-asserted-by":"crossref","first-page":"6734","DOI":"10.1021\/acsnano.2c01548","article-title":"Machine-Learning-Assisted Recognition on Bioinspired Soft Sensor Arrays","volume":"4","author":"Luo","year":"2022","journal-title":"ACS Nano"},{"key":"ref_127","doi-asserted-by":"crossref","first-page":"2200089","DOI":"10.1002\/aisy.202200089","article-title":"Discriminating Soft Actuators\u2019 Thermal Stimuli and Mechanical Deformation by Hydrogel Sensors and Machine Learning","volume":"9","author":"Sun","year":"2022","journal-title":"Adv. Intell. Syst."},{"key":"ref_128","doi-asserted-by":"crossref","first-page":"11061","DOI":"10.1038\/s41598-017-11663-6","article-title":"An Extremely Simple Macroscale Electronic Skin Realized by Deep Machine Learning","volume":"7","author":"Sohn","year":"2017","journal-title":"Sci. Rep."},{"key":"ref_129","doi-asserted-by":"crossref","unstructured":"Luo, S., Mou, W., Li, M., Althoefer, K., and Liu, H. Rotation and Translation Invariant Object Recognition with a Tactile Sensor. Proceedings of the SENSORS, 2014 IEEE, Valencia, Spain.","DOI":"10.1109\/ICSENS.2014.6985179"},{"key":"ref_130","doi-asserted-by":"crossref","first-page":"47","DOI":"10.1016\/j.rcim.2016.05.010","article-title":"Multisensory Fusion Based Virtual Tool Wear Sensing for Ubiquitous Manufacturing","volume":"45","author":"Wang","year":"2017","journal-title":"Robot. Comput. Integr. Manuf."},{"key":"ref_131","doi-asserted-by":"crossref","first-page":"SDDC09","DOI":"10.35848\/1347-4065\/abf2d0","article-title":"Cantilever Damage Evaluation Using Impedance-Loaded SAW Sensor with Continuous Wavelet Analysis and Machine Learning","volume":"60","author":"Suzuki","year":"2021","journal-title":"Jpn. J. Appl. Phys."},{"key":"ref_132","doi-asserted-by":"crossref","first-page":"1453","DOI":"10.1109\/JSEN.2020.3016080","article-title":"Lithium-Ion Battery State-of-Charge Estimator Based on FBG-Based Strain Sensor and Employing Machine Learning","volume":"2","author":"Rente","year":"2021","journal-title":"IEEE Sens. J."},{"key":"ref_133","doi-asserted-by":"crossref","first-page":"343","DOI":"10.2115\/fiberst.2017-0051","article-title":"Bed-Leaving Prediction Using a Sheet-Type Pressure-Sensitive Sensor Base with Deep-Learning","volume":"12","author":"Kuwahara","year":"2017","journal-title":"J. Fiber Sci. Technol."},{"key":"ref_134","doi-asserted-by":"crossref","unstructured":"Moore, S.R., Kranzinger, C., Fritz, J., St\u00f6ggl, T., Kr\u00f6ll, J., and Schwameder, H. (2020). Foot Strike Angle Prediction and Pattern Classification Using LoadsolTM Wearable Sensors: A Comparison of Machine Learning Techniques. Sensors, 20.","DOI":"10.3390\/s20236737"},{"key":"ref_135","doi-asserted-by":"crossref","unstructured":"Choffin, Z., Jeong, N., Callihan, M., Olmstead, S., Sazonov, E., Thakral, S., Getchell, C., and Lombardi, V. (2021). Ankle Angle Prediction Using a Footwear Pressure Sensor and a Machine Learning Technique. Sensors, 21.","DOI":"10.3390\/s21113790"},{"key":"ref_136","doi-asserted-by":"crossref","first-page":"23119","DOI":"10.1109\/ACCESS.2023.3252886","article-title":"Fall Risk Prediction Using Wireless Sensor Insoles With Machine Learning","volume":"11","author":"Agrawal","year":"2023","journal-title":"IEEE Access"},{"key":"ref_137","doi-asserted-by":"crossref","unstructured":"Bilgera, C., Yamamoto, A., Sawano, M., Matsukura, H., and Ishida, H. (2018). Application of Convolutional Long Short-Term Memory Neural Networks to Signals Collected from a Sensor Network for Autonomous Gas Source Localization in Outdoor Environments. Sensors, 12.","DOI":"10.3390\/s18124484"},{"key":"ref_138","doi-asserted-by":"crossref","unstructured":"Zhao, R., Yan, R., Wang, J., and Mao, K. (2017). Learning to Monitor Machine Health with Convolutional Bi-Directional LSTM Networks. Sensors, 17.","DOI":"10.3390\/s17020273"},{"key":"ref_139","doi-asserted-by":"crossref","first-page":"2101","DOI":"10.1109\/LRA.2019.2899192","article-title":"From Pixels to Percepts: Highly Robust Edge Perception and Contour Following Using Deep Learning and an Optical Biomimetic Tactile Sensor","volume":"4","author":"Lepora","year":"2019","journal-title":"IEEE Robot. Autom. Lett."},{"key":"ref_140","doi-asserted-by":"crossref","first-page":"1439","DOI":"10.1007\/s10845-023-02126-z","article-title":"Federated transfer learning for auxiliary classifier generative adversarial networks: Framework and industrial application","volume":"35","author":"Guo","year":"2024","journal-title":"J. Intell. Manuf."},{"key":"ref_141","doi-asserted-by":"crossref","first-page":"2300557","DOI":"10.1080\/23311916.2023.2300557","article-title":"Multiple treatment effect estimation for business analytics using observational data","volume":"11","author":"Tsuboi","year":"2024","journal-title":"Cogent Eng."},{"key":"ref_142","unstructured":"He, Y., Lin, J., Liu, Z., Wang, H., Li, L., and Han, S. Computer Vision\u2013ECCV 2018, Proceedings of the 15th European Conference, Munich, Germany, September 8\u201314 2018, Springer."},{"key":"ref_143","doi-asserted-by":"crossref","first-page":"30","DOI":"10.1109\/MC.2017.9","article-title":"The Emergence of Edge Computing","volume":"50","author":"Satyanarayanan","year":"2017","journal-title":"Computer"},{"key":"ref_144","doi-asserted-by":"crossref","first-page":"686","DOI":"10.1016\/j.jcp.2018.10.045","article-title":"Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations","volume":"378","author":"Raissi","year":"2019","journal-title":"J. Comput. Phys."},{"key":"ref_145","doi-asserted-by":"crossref","first-page":"483","DOI":"10.1038\/s41928-022-00822-x","article-title":"Silicon photodiodes that multiply","volume":"5","author":"Chai","year":"2022","journal-title":"Nat. Electron."},{"key":"ref_146","doi-asserted-by":"crossref","first-page":"2203830","DOI":"10.1002\/adma.202203830","article-title":"In-Sensor Computing: Materials, Devices, and Integration Technologies","volume":"35","author":"Wan","year":"2023","journal-title":"Adv. Mater."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/24\/10\/2958\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,5,7]],"date-time":"2024-05-07T13:09:33Z","timestamp":1715087373000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/24\/10\/2958"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,5,7]]},"references-count":146,"journal-issue":{"issue":"10","published-online":{"date-parts":[[2024,5]]}},"alternative-id":["s24102958"],"URL":"https:\/\/doi.org\/10.3390\/s24102958","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,5,7]]}}}