{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,18]],"date-time":"2024-08-18T07:07:20Z","timestamp":1723964840001},"reference-count":48,"publisher":"MDPI AG","issue":"5","license":[{"start":{"date-parts":[[2024,2,23]],"date-time":"2024-02-23T00:00:00Z","timestamp":1708646400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key R&D Program of China","doi-asserted-by":"publisher","award":["2018AAA0100300"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100001809","name":"National Natural Science Foundation of China","doi-asserted-by":"publisher","award":["31741048"],"id":[{"id":"10.13039\/501100001809","id-type":"DOI","asserted-by":"publisher"}]},{"DOI":"10.13039\/501100012226","name":"Fundamental Research Funds for the Central Universities","doi-asserted-by":"publisher","award":["DUT22YG238"],"id":[{"id":"10.13039\/501100012226","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"In this study, a cationic amphiphilic self-assembling peptide (SAP) Z23 was designed, and a simple bisphenol a (BPA) sensor, based on SAP Z23\/multiwalled carbon nanotubes (Z23\/MWCNTs) composite, was successfully fabricated on the surface of a glassy carbon electrode (GCE). The composite material was formed by \u03c0-\u03c0 stacking interaction between the aromatic group on the hydrophobic side of Z23 and the side-wall of MWCNTs, with the charged hydrophilic group of Z23 exposed. During the electrocatalytic process of BPA, a synergistic effect was observed between Z23 and MWCNTs. The current response of the sensor based on composite material was 3.24 times that of the MWCNTs-modified electrode, which was much higher than that of the peptide-based electrode. Differential pulse voltammetry (DPV) was used to optimize the experimental conditions affecting the analytical performance of the modified electrode. Under optimal conditions, the linear range of the sensor was from 10 nM to 100 \u03bcM by amperometric measurement with sensitivity and limit of detection (LOD) at 6.569 \u03bcA\u03bcM\u22121cm\u22122 and 1.28 nM (S\/N = 3), respectively. Consequently, the sensor has excellent electrochemical performance and is easy to fabricate, making it a good prospect in the field of electrochemical detection in the future.<\/jats:p>","DOI":"10.3390\/s24051465","type":"journal-article","created":{"date-parts":[[2024,2,26]],"date-time":"2024-02-26T08:34:04Z","timestamp":1708936444000},"page":"1465","source":"Crossref","is-referenced-by-count":1,"title":["Electrochemical Sensors Based on Self-Assembling Peptide\/Carbon Nanotube Nanocomposites for Sensitive Detection of Bisphenol A"],"prefix":"10.3390","volume":"24","author":[{"given":"Yuhang","family":"Zhang","sequence":"first","affiliation":[{"name":"School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China"}]},{"given":"Tingting","family":"Shao","sequence":"additional","affiliation":[{"name":"Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5392-8019","authenticated-orcid":false,"given":"Hangyu","family":"Zhang","sequence":"additional","affiliation":[{"name":"School of Biomedical Engineering, Faculty of Medicine, Dalian University of Technology, Dalian 116024, China"},{"name":"Liaoning Key Lab of Integrated Circuit and Biomedical Electronic System, Dalian University of Technology, Dalian 116024, China"}]}],"member":"1968","published-online":{"date-parts":[[2024,2,23]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"293","DOI":"10.1210\/er.2009-0002","article-title":"Endocrine-disrupting chemicals: An Endocrine Society scientific statement","volume":"30","author":"Bourguignon","year":"2009","journal-title":"Endocr. Rev."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"105528","DOI":"10.1016\/j.microc.2020.105528","article-title":"Molybdenum trioxide incorporated in a carbon paste as a sensitive device for bisphenol A monitoring","volume":"159","author":"Antoniazzi","year":"2020","journal-title":"Microchem. J."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1871","DOI":"10.1080\/19440049.2019.1657967","article-title":"A method to determine BPA, BPB, and BPF levels in fruit juices by liquid chromatography coupled to tandem mass spectrometry","volume":"36","author":"Gallo","year":"2019","journal-title":"Food Addit. Contam. Part A"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"4661","DOI":"10.1039\/C5AY00541H","article-title":"Molecularly imprinted surface plasmon resonance (SPR) based sensing of bisphenol A for its selective detection in aqueous systems","volume":"7","author":"Shaikh","year":"2015","journal-title":"Anal. Methods"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"131","DOI":"10.1016\/j.nanoso.2017.03.013","article-title":"Development of FRET biosensor based on aptamer\/functionalized graphene for ultrasensitive detection of bisphenol A and discrimination from analogs","volume":"10","author":"Gupta","year":"2017","journal-title":"Nano-Struct. Nano-Objects"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"1059","DOI":"10.1016\/j.bios.2016.09.109","article-title":"A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods","volume":"89","author":"Mirzajani","year":"2017","journal-title":"Biosens. Bioelectron."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"7492","DOI":"10.1021\/acsami.5b00199","article-title":"Building an aptamer\/graphene oxide FRET biosensor for one-step detection of bisphenol A","volume":"7","author":"Zhu","year":"2015","journal-title":"ACS Appl. Mater. Interfaces"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"255","DOI":"10.1016\/j.talanta.2013.12.001","article-title":"Hierarchically imprinted mesoporous silica polymer: An efficient solid-phase extractant for bisphenol A","volume":"120","author":"Cheng","year":"2014","journal-title":"Talanta"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"37","DOI":"10.1016\/j.talanta.2017.10.055","article-title":"SERS strategy based on the modified Au nanoparticles for highly sensitive detection of bisphenol A residues in milk","volume":"179","author":"Yang","year":"2018","journal-title":"Talanta"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2162","DOI":"10.1002\/elan.201900176","article-title":"Electrochemical sensor based on casein and carbon black for bisphenol A detection","volume":"31","author":"Orzari","year":"2019","journal-title":"Electroanalysis"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"113074","DOI":"10.1016\/j.fct.2022.113074","article-title":"Electrochemical sensors based on carbon nanostructures for the analysis of bisphenol A\u2014A review","volume":"165","author":"Moradi","year":"2022","journal-title":"Food Chem. Toxicol."},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Nardi, N., Baumgarten, L.G., Dreyer, J.P., Santana, E.R., Winiarski, J.P., and Vieira, I.C. (2023). Nanocomposite based on green synthesis of gold nanoparticles decorated with functionalized multiwalled carbon nanotubes for the electrochemical determination of hydroxychloroquine. J. Pharm. Biomed. Anal., 236.","DOI":"10.1016\/j.jpba.2023.115681"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"535","DOI":"10.1126\/science.1222453","article-title":"Carbon nanotubes: Present and future commercial applications","volume":"339","author":"Tawfick","year":"2013","journal-title":"Science"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"837","DOI":"10.1016\/j.progpolymsci.2010.03.002","article-title":"Polymer nanocomposites based on functionalized carbon nanotubes","volume":"35","author":"Sahoo","year":"2010","journal-title":"Prog. Polym. Sci."},{"key":"ref_15","first-page":"25978","article-title":"Dispersion and performance properties of carbon nanotubes (CNTs) based polymer composites: A review","volume":"2","author":"Jogi","year":"2012","journal-title":"J. Encapsul. Adsorpt. Sci."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"1599","DOI":"10.1007\/s00396-016-3922-7","article-title":"Polymer brush synthesis on surface modified carbon nanotubes via in situ emulsion polymerization","volume":"294","author":"Khan","year":"2016","journal-title":"Colloid Polym. Sci."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"2005499","DOI":"10.1002\/adfm.202005499","article-title":"In situ interfacial polymerization: A technique for rapid formation of highly loaded carbon nanotube-polymer composites","volume":"30","author":"Chazot","year":"2020","journal-title":"Adv. Funct. Mater."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"102126","DOI":"10.1016\/j.cis.2020.102126","article-title":"Functionalization of carbon nanotubes by combination of controlled radical polymerization and \u201cgrafting to\u201d method","volume":"278","author":"Eskandari","year":"2020","journal-title":"Adv. Colloid Interface Sci."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"26","DOI":"10.1016\/j.cattod.2019.08.046","article-title":"Non-covalent and covalent immobilization of Candida antarctica lipase B on chemically modified multiwalled carbon nanotubes for a green acylation process in supercritical CO2","volume":"348","author":"Bourkaib","year":"2020","journal-title":"Catal. Today"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"66","DOI":"10.1016\/j.bioelechem.2017.11.009","article-title":"Peptide-based biosensors: From self-assembled interfaces to molecular probes in electrochemical assays","volume":"120","author":"Puiu","year":"2018","journal-title":"Bioelectrochemistry"},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Backes, C. (2012). Noncovalent Functionalization of Carbon Nanotubes: Fundamental Aspects of Dispersion and Separation in Water, Springer Science & Business Media.","DOI":"10.1007\/978-3-642-27582-1"},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"511","DOI":"10.1038\/nchem.1937","article-title":"Installing logic-gate responses to a variety of biological substances in supramolecular hydrogel\u2013enzyme hybrids","volume":"6","author":"Ikeda","year":"2014","journal-title":"Nat. Chem."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"2687","DOI":"10.1021\/nn102997b","article-title":"Monitoring botulinum neurotoxin a activity with peptide-functionalized quantum dot resonance energy transfer sensors","volume":"5","author":"Sapsford","year":"2011","journal-title":"ACS Nano"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"825","DOI":"10.1002\/smll.200902186","article-title":"Characterization of peptide-nanostructure-modified electrodes and their application for ultrasensitive environmental monitoring","volume":"6","author":"Gazit","year":"2010","journal-title":"Small"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"1437","DOI":"10.1002\/elan.200603558","article-title":"Peptide modified electrodes as electrochemical metal ion sensors","volume":"18","author":"Chow","year":"2006","journal-title":"Electroanalysis"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1021\/nl0484189","article-title":"Novel electrochemical biosensing platform using self-assembled peptide nanotubes","volume":"5","author":"Yemini","year":"2005","journal-title":"Nano Lett."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1594","DOI":"10.1021\/am200149h","article-title":"Development of an electrochemical metal-ion biosensor using self-assembled peptide nanofibrils","volume":"3","author":"Viguier","year":"2011","journal-title":"ACS Appl. Mater. Interfaces"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"2147","DOI":"10.1021\/nl100825n","article-title":"Covalent monofunctionalization of peptide-coated quantum dots for single-molecule assays","volume":"10","author":"Clarke","year":"2010","journal-title":"Nano Lett."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"5487","DOI":"10.1021\/nn1016132","article-title":"Quantum dot peptide biosensors for monitoring caspase 3 proteolysis and calcium ions","volume":"4","author":"Prasuhn","year":"2010","journal-title":"ACS Nano"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"85","DOI":"10.1016\/j.bios.2013.01.011","article-title":"Sensitive amperometric biosensor for phenolic compounds based on graphene\u2013silk peptide\/tyrosinase composite nanointerface","volume":"44","author":"Qu","year":"2013","journal-title":"Biosens. Bioelectron."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"392","DOI":"10.1016\/j.bios.2014.11.029","article-title":"Self-assembled dipeptide\u2013gold nanoparticle hybrid spheres for highly sensitive amperometric hydrogen peroxide biosensors","volume":"66","author":"Gong","year":"2015","journal-title":"Biosens. Bioelectron."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"25036","DOI":"10.1021\/acsami.6b05409","article-title":"Self-assembled peptide hydrogel as a smart biointerface for enzyme-based electrochemical biosensing and cell monitoring","volume":"8","author":"Lian","year":"2016","journal-title":"ACS Appl. Mater. Interfaces"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1705729","DOI":"10.1002\/adfm.201705729","article-title":"Facile Nondestructive Assembly of Tyrosine-Rich Peptide Nanofibers as a Biological Glue for Multicomponent-Based Nanoelectrode Applications","volume":"28","author":"Min","year":"2018","journal-title":"Adv. Funct. Mater."},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"1026","DOI":"10.1039\/C2AN36121C","article-title":"Detection of cancer cells using a peptidenanotube\u2013folic acid modified graphene electrode","volume":"138","author":"Castillo","year":"2013","journal-title":"Analyst"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"320","DOI":"10.1007\/s00604-018-2838-y","article-title":"Voltammetric aptasensor for bisphenol A based on the use of a MWCNT\/Fe3O4@gold nanocomposite","volume":"185","author":"Baghayeri","year":"2018","journal-title":"Microchim. Acta"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"183","DOI":"10.1016\/j.actbio.2017.03.041","article-title":"Rational design of charged peptides that self-assemble into robust nanofibers as immune-functional scaffolds","volume":"55","author":"Zhang","year":"2017","journal-title":"Acta Biomater."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"2619","DOI":"10.1021\/bm900544e","article-title":"Tuning the pH responsiveness of \u03b2-hairpin peptide folding, self-assembly, and hydrogel material formation","volume":"10","author":"Rajagopal","year":"2009","journal-title":"Biomacromolecules"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"5105","DOI":"10.1073\/pnas.0900026106","article-title":"Designed amphiphilic peptide forms stable nanoweb, slowly releases encapsulated hydrophobic drug, and accelerates animal hemostasis","volume":"106","author":"Ruan","year":"2009","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Sun, Y., Zhang, Y., Tian, L., Zhao, Y., Wu, D., Xue, W., Ramakrishna, S., Wu, W., and He, L. (2016). Self-assembly behaviors of molecular designer functional RADA16-I peptides: Influence of motifs, pH, and assembly time. Biomed. Mater., 12.","DOI":"10.1088\/1748-605X\/12\/1\/015007"},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Zainul, R., Abd Azis, N., Md Isa, I., Hashim, N., Ahmad, M.S., Saidin, M.I., and Mukdasai, S. (2019). Zinc\/aluminium\u2013quinclorac layered nanocomposite modified multiwalled carbon nanotube paste electrode for electrochemical determination of bisphenol A. Sensors, 19.","DOI":"10.3390\/s19040941"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"124247","DOI":"10.1016\/j.matchemphys.2021.124247","article-title":"Electrochemical detection of bisphenol a on a MWCNTs\/CuFe2O4 nanocomposite modified glassy carbon electrode","volume":"261","author":"Baghayeri","year":"2021","journal-title":"Mater. Chem. Phys."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"408","DOI":"10.1016\/j.snb.2016.05.105","article-title":"MWCNTs-PEI composites-based electrochemical sensor for sensitive detection of bisphenol A","volume":"235","author":"Yang","year":"2016","journal-title":"Sens. Actuators B Chem."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"362","DOI":"10.1016\/j.talanta.2015.11.010","article-title":"Electrochemical determination of bisphenol A at ordered mesoporous carbon modified nano-carbon ionic liquid paste electrode","volume":"148","author":"Li","year":"2016","journal-title":"Talanta"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"379","DOI":"10.1007\/s00604-010-0512-0","article-title":"Voltammetric determination of bisphenol A in food package by a glassy carbon electrode modified with carboxylated multiwalled carbon nanotubes","volume":"172","author":"Li","year":"2011","journal-title":"Microchim. Acta"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"673","DOI":"10.1016\/j.snb.2017.02.104","article-title":"A simple hydroxylated multiwalled carbon nanotubes modified glassy carbon electrode for rapid amperometric detection of bisphenol A","volume":"246","author":"Cosio","year":"2017","journal-title":"Sens. Actuators B Chem."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"96","DOI":"10.1002\/elan.201500448","article-title":"Enhanced biosensing of bisphenol A using a nanointerface based on tyrosinase\/reduced graphene oxides functionalized with ionic liquid","volume":"28","author":"Li","year":"2016","journal-title":"Electroanalysis"},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"698","DOI":"10.1016\/j.jallcom.2019.02.020","article-title":"Highly sensitive and selective amperometric determination of BPA on carbon black\/f-MWCNT composite modified GCE","volume":"786","author":"Thamilselvan","year":"2019","journal-title":"J. Alloys Compd."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1016\/j.snb.2017.06.160","article-title":"Electrochemical sensor based on multiwalled carbon nanotube and gold nanoparticle modified electrode for the sensitive detection of bisphenol A","volume":"253","author":"Messaoud","year":"2017","journal-title":"Sens. Actuators B Chem."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/24\/5\/1465\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,2,27]],"date-time":"2024-02-27T05:39:56Z","timestamp":1709012396000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/24\/5\/1465"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2024,2,23]]},"references-count":48,"journal-issue":{"issue":"5","published-online":{"date-parts":[[2024,3]]}},"alternative-id":["s24051465"],"URL":"https:\/\/doi.org\/10.3390\/s24051465","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2024,2,23]]}}}