{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,9,4]],"date-time":"2024-09-04T15:31:39Z","timestamp":1725463899733},"reference-count":69,"publisher":"MDPI AG","issue":"14","license":[{"start":{"date-parts":[[2023,7,13]],"date-time":"2023-07-13T00:00:00Z","timestamp":1689206400000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan","award":["BR11765535"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"This article is devoted to solving the problem of converting sign language into a consistent text with intonation markup for subsequent voice synthesis of sign phrases by speech with intonation. The paper proposes an improved method of continuous recognition of sign language, the results of which are transmitted to a natural language processor based on analyzers of morphology, syntax, and semantics of the Kazakh language, including morphological inflection and the construction of an intonation model of simple sentences. This approach has significant practical and social significance, as it can lead to the development of technologies that will help people with disabilities to communicate and improve their quality of life. As a result of the cross-validation of the model, we obtained an average test accuracy of 0.97 and an average val_accuracy of 0.90 for model evaluation. We also identified 20 sentence structures of the Kazakh language with their intonational model.<\/jats:p>","DOI":"10.3390\/s23146383","type":"journal-article","created":{"date-parts":[[2023,7,14]],"date-time":"2023-07-14T04:49:30Z","timestamp":1689310170000},"page":"6383","source":"Crossref","is-referenced-by-count":4,"title":["Continuous Sign Language Recognition and Its Translation into Intonation-Colored Speech"],"prefix":"10.3390","volume":"23","author":[{"ORCID":"http:\/\/orcid.org\/0000-0002-4669-9254","authenticated-orcid":false,"given":"Nurzada","family":"Amangeldy","sequence":"first","affiliation":[{"name":"Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-2797-672X","authenticated-orcid":false,"given":"Aru","family":"Ukenova","sequence":"additional","affiliation":[{"name":"Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan"}]},{"given":"Gulmira","family":"Bekmanova","sequence":"additional","affiliation":[{"name":"Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan"}]},{"given":"Bibigul","family":"Razakhova","sequence":"additional","affiliation":[{"name":"Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-5898-815X","authenticated-orcid":false,"given":"Marek","family":"Milosz","sequence":"additional","affiliation":[{"name":"Department of Computer Science, Lublin University of Technology, 36B Nadbystrzycka Str., 20-618 Lublin, Poland"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-3807-9530","authenticated-orcid":false,"given":"Saule","family":"Kudubayeva","sequence":"additional","affiliation":[{"name":"Faculty of Information Technologies, L.N. Gumilyov Eurasian National University, Astana 010000, Kazakhstan"}]}],"member":"1968","published-online":{"date-parts":[[2023,7,13]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"113794","DOI":"10.1016\/j.eswa.2020.113794","article-title":"Sign language recognition: A deep survey","volume":"164","author":"Rastgoo","year":"2021","journal-title":"Expert Syst. Appl."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"126917","DOI":"10.1109\/ACCESS.2021.3110912","article-title":"Deep learning for sign language recognition: Current techniques, benchmarks, and open issues","volume":"9","author":"Khalid","year":"2021","journal-title":"IEEE Access"},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Amin, M.S., Rizvi, S.T.H., and Hossain, M. (2022). A Comparative Review on Applications of Different Sensors for Sign Language Recognition. J. Imaging, 8.","DOI":"10.3390\/jimaging8040098"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"40979","DOI":"10.1109\/ACCESS.2022.3161440","article-title":"Technological Solutions for Sign Language Recognition: A Scoping Review of Research Trends, Challenges, and Opportunities","volume":"10","author":"Joksimoski","year":"2022","journal-title":"IEEE Access"},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Sosa-Jimenez, C.O., Rios-Figueroa, H.V., Rechy-Ramirez, E.J., Marin-Hernandez, A., and Gonzalez-Cosio AL, S. (2017, January 8\u201310). Real-time Mexican Sign Language recognition. Proceedings of the 2017 IEEE International Autumn Meeting on Power, Electronics and Computing, ROPEC 2017, Ixtapa, Mexico.","DOI":"10.1109\/ROPEC.2017.8261606"},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Amangeldy, N., Kudubayeva, S., Kassymova, A., Karipzhanova, A., Razakhova, B., and Kuralov, S. (2022). Sign Language Recognition Method Based on Palm Definition Model and Multiple Classification. Sensors, 22.","DOI":"10.3390\/s22176621"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"161669","DOI":"10.1109\/ACCESS.2021.3132668","article-title":"SignBERT: A BERT-Based Deep Learning Framework for Continuous Sign Language Recognition","volume":"9","author":"Zhou","year":"2021","journal-title":"IEEE Access"},{"key":"ref_8","doi-asserted-by":"crossref","unstructured":"Papastratis, I., Dimitropoulos, K., and Daras, P. (2021). Continuous Sign Language Recognition through a Context-Aware Generative Adversarial Network. Sensors, 21.","DOI":"10.3390\/s21072437"},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Brock, H., Farag, I., and Nakadai, K. (2020). Recognition of Non-Manual Content in Continuous Japanese Sign Language. Sensors, 20.","DOI":"10.3390\/s20195621"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"91170","DOI":"10.1109\/ACCESS.2020.2993650","article-title":"Continuous Sign Language Recognition Through Cross-Modal Alignment of Video and Text Embeddings in a Joint-Latent Space","volume":"8","author":"Papastratis","year":"2020","journal-title":"IEEE Access"},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"216718","DOI":"10.1109\/ACCESS.2020.3039539","article-title":"Multi-Information Spatial\u2013Temporal LSTM Fusion Continuous Sign Language Neural Machine Translation","volume":"8","author":"Xiao","year":"2020","journal-title":"IEEE Access"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Ryumin, D., Ivanko, D., and Ryumina, E. (2023). Audio-Visual Speech and Gesture Recognition by Sensors of Mobile Devices. Sensors, 23.","DOI":"10.3390\/s23042284"},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"108","DOI":"10.1016\/j.cviu.2015.09.013","article-title":"Continuous sign language recognition: Towards large vocabulary statistical recognition systems handling multiple signers","volume":"141","author":"Koller","year":"2015","journal-title":"Comput. Vis. Image Understand."},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Camgoz, N.C., Hadfield, S., Koller, O., Ney, H., and Bowden, R. (2018, January 18\u201323). Neural sign language translation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.","DOI":"10.1109\/CVPR.2018.00812"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Huang, J., Zhou, W., Zhang, Q., Li, H., and Li, W. (2018, January 2\u20133). Video-based sign language recognition without temporal segmentation. Proceedings of the AAAI Conference on Artificial Intelligence, New Orleans, LA, USA.","DOI":"10.1609\/aaai.v32i1.11903"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"18473","DOI":"10.1007\/s00521-022-07454-4","article-title":"Adam or Eve? Automatic users\u2019 gender classification via gestures analysis on touch devices","volume":"34","author":"Guarino","year":"2022","journal-title":"Neural Comput. Appl."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"15803","DOI":"10.1007\/s11042-020-10446-y","article-title":"Techno-regulation and intelligent safeguards","volume":"80","author":"Zaccagnino","year":"2021","journal-title":"Multimed. Tools Appl."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"669","DOI":"10.1007\/978-3-319-62398-6_47","article-title":"Ontology-based sentiment analysis of kazakh sentences","volume":"Volume 10406","author":"Yergesh","year":"2017","journal-title":"Proceedings of the Computational Science and Its Applications\u2013ICCSA 2017: 17th International Conference"},{"key":"ref_19","unstructured":"Bekmanova, G., Sharipbay, A., Altenbek, G., Adali, E., Zhetkenbay, L., Kamanur, U., and Zulkhazhav, A. (2017, January 27\u201329). A uniform morphological analyzer for the kazakh and turkish languages. Proceedings of the Sixth International Conference on Analysis of Images, Social Networks, and Texts (AIST 2017), Moscow, Russia. CEUR Workshop Proceedings."},{"key":"ref_20","first-page":"257","article-title":"Ontological modeling of morphological rules for the adjectives in kazakh and turkish languages","volume":"91","author":"Zhetkenbay","year":"2016","journal-title":"J. Theor. Appl. Inf. Technol."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Sharipbaev, A.A., Bekmanova, G.T., Buribayeva, A.K., Yergesh, B.Z., Mukanova, A.S., and Kaliyev, A.K. (2012, January 20\u201324). Semantic neural network model of morphological rules of the agglutinative languages. Proceedings of the 6th International Conference on Soft Computing and Intelligent Systems, and 13th International Symposium on Advanced Intelligence Systems, SCIS\/ISIS, Kobe, Japan.","DOI":"10.1109\/SCIS-ISIS.2012.6505337"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Zhou, Z., Tam, V.W.L., and Lam, E.Y. (2022). A Portable Sign Language Collection and Translation Platform with Smart Watches Using a BLSTM-Based Multi-Feature Framework. Micromachines, 13.","DOI":"10.3390\/mi13020333"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Kapuscinski, T., and Wysocki, M. (2020). Recognition of Signed Expressions in an Experimental System Supporting Deaf Clients in the City Office. Sensors, 20.","DOI":"10.3390\/s20082190"},{"key":"ref_24","first-page":"11","article-title":"\u0424o\u0440\u043c\u0430\u043b\u0438\u0437\u0430\u0446\u0438\u044f \u043co\u0440\u0444o\u043bo\u0433\u0438\u0447\u0435\u0441\u043a\u0438\u0445 \u043f\u0440\u0430\u0432\u0438\u043b \u043a\u0430\u0437\u0430\u0445\u0441\u043ao\u0433o \u044f\u0437\u044b\u043a\u0430 \u0441 \u043fo\u043co\u0449\u044c\u044e \u0441\u0435\u043c\u0430\u043d\u0442\u0438\u0447\u0435\u0441\u043ao\u0439 \u043d\u0435\u0439\u0440o\u043d\u043do\u0439 \u0441\u0435\u0442\u0438","volume":"4","year":"2009","journal-title":"\u0414o\u043a\u043b\u0430\u0434\u044b \u041d\u0430\u0446\u0438o\u043d\u0430\u043b\u044c\u043do\u0439 \u0410\u043a\u0430\u0434\u0435\u043c\u0438\u0438 \u041d\u0430\u0443\u043a \u0420\u0435\u0441\u043f\u0443\u0431\u043b\u0438\u043a\u0438 \u041a\u0430\u0437\u0430\u0445\u0441\u0442\u0430\u043d"},{"key":"ref_25","unstructured":"\u0417\u0430\u043b\u0438\u0437\u043d\u044f\u043a, \u0410.\u0410. (1980). \u0413\u0440\u0430\u043c\u043c\u0430\u0442\u0438\u0447\u0435\u0441\u043a\u0438\u0439 \u0441\u043bo\u0432\u0430\u0440\u044c \u0440\u0443\u0441\u0441\u043ao\u0433o \u044f\u0437\u044b\u043a\u0430. \u0421\u043bo\u0432o\u0438\u0437\u043c\u0435\u043d\u0435\u043d\u0438\u0435, Russian Language."},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Bekmanova, G., Yelibayeva, G., Aubakirova, S., Dyussupova, N., Sharipbay, A., and Nyazova, R. (2019, January 1\u20134). Methods for Analyzing Polarity of the Kazakh Texts Related to the Terrorist Threats Methods for analyzing polarity of the Kazakh texts related to the terrorist threats. Proceedings of the Computational Science and Its Applications\u2013ICCSA 2019: 19th International Conference, Saint Petersburg, Russia. Proceedings, Part I 19.","DOI":"10.1007\/978-3-030-24289-3_53"},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Sharipbay, A., Razakhova, B., Mukanova, A., Yergesh, B., and Yelibayeva, G. (2019, January 1\u20135). Syntax parsing model of Kazakh simple sentences. Proceedings of the Second International Conference on Data Science, E-Learning and Information Systems DATA\u201919, Dubai, United Arab Emirates.","DOI":"10.1145\/3368691.3368745"},{"key":"ref_28","first-page":"39","article-title":"Sentiment analysis of Kazakh phrases based on morphological rules. Journal of Kyrgyz state technical university named after I. Razzakov","volume":"38","author":"Yergesh","year":"2016","journal-title":"Theor. Appl. Sci. Tech. J."},{"key":"ref_29","unstructured":"Kolita, S., and Acharjee, P.B. (2023). Mathematical and Computational Intelligence to Socio-Scientific Analytics and Applications, Springer Nature."},{"key":"ref_30","unstructured":"Tang, H., Zhang, X., Wang, J., Cheng, N., and Xiao, J. (2013). QI-TTS: Questioning Intonation Control for Emotional Speech Synthesis. arXiv."},{"key":"ref_31","unstructured":"Lee, J., Lee, J.Y., Choi, H., Mun, S., Park, S., Bae, J.S., and Kim, C. (2022). Into-TTS: Intonation Template based Prosody Control System. arXiv."},{"key":"ref_32","first-page":"141","article-title":"Deep learning and intonation in Text to Speech systems","volume":"25","author":"Martin","year":"2019","journal-title":"ExLing"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"15171","DOI":"10.1007\/s11042-022-13943-4","article-title":"A deep learning approaches in text-to-speech system: A systematic review and recent research perspective","volume":"82","author":"Kumar","year":"2023","journal-title":"Multimed. Tools Appl."},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Zianouka, Y., Hetsevich, Y., Latyshevich, D., and Dzenisiuk, Z. (2021, January 9\u201311). Automatic generation of intonation marks and prosodic segmentation for Belarusian NooJ module. Proceedings of the Formalizing Natural Languages: Applications to Natural Language Processing and Digital Humanities: 15th International Conference, NooJ 2021, Besan\u00e7on, France. Revised Selected Papers 15.","DOI":"10.1007\/978-3-030-92861-2_20"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Wan, V., Shen, J., Silen, H., and Clark, R. (2020). Modelling Intonation in Spectrograms for Neural Vocoder Based Text-to-Speech. Speech Prosody, Available online: https:\/\/www.isca-speech.org\/archive\/pdfs\/speechprosody_2020\/wan20_speechprosody.pdf.","DOI":"10.21437\/SpeechProsody.2020-193"},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Souza, A., and Freitas, D. (2020, January 2\u20134). Towards a Prosodic Model for Synthesized Speech of Mathematical Expressions in MathML. Proceedings of the 9th International Conference on Software Development and Technologies for Enhancing Accessibility and Fighting Info-Exclusion, Online Portugal.","DOI":"10.1145\/3439231.3440617"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Marelli, F., Schnell, B., Bourlard, H., Dutoit, T., and Garner, P.N. (2019, January 12\u201317). An end-to-end network to synthesize intonation using a generalized command response model. Proceedings of the ICASSP 2019-2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Brighton, UK.","DOI":"10.1109\/ICASSP.2019.8683815"},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Mamyrbayev, O.Z., Oralbekova, D.O., Alimhan, K., and Nuranbayeva, B.M. (2022). Hybrid end-to-end model for Kazakh speech recognition. Int. J. Speech Technol., 1\u201310.","DOI":"10.1007\/s10772-022-09983-8"},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Mamyrbayev, O., Oralbekova, D., Kydyrbekova, A., Turdalykyzy, T., and Bekarystankyzy, A. (2021, January 25\u201327). End-to-end model based on RNN-T for Kazakh speech recognition. Proceedings of the 2021 3rd International Conference on Computer Communication and the Internet (ICCCI), Nagoya, Japan.","DOI":"10.1109\/ICCCI51764.2021.9486811"},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Mussakhojayeva, S., Khassanov, Y., and Varol, H.A. (2021, January 27\u201330). A study of multilingual end-to-end speech recognition for Kazakh, Russian, and English. Proceedings of the Speech and Computer: 23rd International Conference, SPECOM 2021, St. Petersburg, Russia. Proceedings 23.","DOI":"10.1007\/978-3-030-87802-3_41"},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Du, W., Maimaitiyiming, Y., Nijat, M., Li, L., Hamdulla, A., and Wang, D. (2022). Automatic Speech Recognition for Uyghur, Kazakh, and Kyrgyz: An Overview. Appl. Sci., 13.","DOI":"10.3390\/app13010326"},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Meng, W., and Yolwas, N. (2023). A Study of Speech Recognition for Kazakh Based on Unsupervised Pre-Training. Sensors, 23.","DOI":"10.3390\/s23020870"},{"key":"ref_43","first-page":"5880","article-title":"Development of Automatic speech recognition for Kazakh language using transfer learning","volume":"9","author":"Beibut","year":"2020","journal-title":"Int. J."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"314","DOI":"10.1504\/IJMC.2020.107097","article-title":"Multimodal systems for speech recognition","volume":"18","author":"Mamyrbayev","year":"2020","journal-title":"Int. J. Mob. Commun."},{"key":"ref_45","unstructured":"\u0428\u04d9\u0440\u0456\u043f\u0431\u0430\u0439, \u0410.\u04d8., \u0420\u0430\u0437\u0430\u0445o\u0432\u0430, \u0411.\u0428., \u041c\u0443\u043a\u0430\u043do\u0432\u0430, \u0410.\u0421., and \u0415\u0440\u0433\u0435\u0448, \u0411.\u0416. (2023, July 09). \u049a\u0430\u0437\u0430\u049b \u0442\u0456\u043b\u0456 \u0433\u0440\u0430\u043c\u043c\u0430\u0442\u0438\u043a\u0430\u0441\u044b\u043d\u044b\u04a3 \u043c\u0430\u0442\u0435\u043c\u0430\u0442\u0438\u043a\u0430\u043b\u044b\u049b \u0436\u04d9\u043d\u0435 o\u043d\u0442o\u043bo\u0433\u0438\u044f\u043b\u044b\u049b \u043co\u0434\u0435\u043b\u0434\u0435\u0440\u0456 \u043c\u0435\u043d \u044d\u043b\u0435\u043a\u0442\u0440o\u043d\u0434\u044b\u049b \u0442\u0435\u0437\u0430\u0443\u0440\u0443\u0441\u044b. Available online: https:\/\/kazneb.kz\/en\/bookView\/view?brId=1641644."},{"key":"ref_46","first-page":"3669","article-title":"Intonational Division of a Speech Flow in the Kazakh Language","volume":"11","author":"Bazarbayeva","year":"2016","journal-title":"Int. J. Environ. Sci. Educ."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"226","DOI":"10.5539\/res.v7n6p226","article-title":"Universal Properties of Intonation Components","volume":"7","author":"Bazarbayeva","year":"2015","journal-title":"Rev. Eur. Stud."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"2081","DOI":"10.52462\/jlls.150","article-title":"The pragmalinguistic character of intonation units in discourse","volume":"17","author":"Bazarbayeva","year":"2021","journal-title":"J. Lang. Linguist. Stud."},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"637","DOI":"10.3389\/fnins.2020.00637","article-title":"Hand-Gesture Recognition Based on EMG and Event-Based Camera Sensor Fusion: A Benchmark in Neuromorphic Computing","volume":"14","author":"Ceolini","year":"2020","journal-title":"Front. Neurosci."},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Bird, J.J., Ek\u00e1rt, A., and Faria, D.R. (2020). British Sign Language Recognition via Late Fusion of Computer Vision and Leap Motion with Transfer Learning to American Sign Language. Sensors, 20.","DOI":"10.20944\/preprints202008.0209.v1"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1280","DOI":"10.1049\/ipr2.12712","article-title":"Gesture recognition algorithm based on multi-scale feature fusion in RGB-D images","volume":"17","author":"Sun","year":"2022","journal-title":"IET Image Process."},{"key":"ref_52","doi-asserted-by":"crossref","unstructured":"Sahoo, J.P., Prakash, A.J., P\u0142awiak, P., and Samantray, S. (2022). Real-Time Hand Gesture Recognition Using Fine-Tuned Convolutional Neural Network. Sensors, 22.","DOI":"10.3390\/s22030706"},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Dayal, A., Paluru, N., Cenkeramaddi, L.R., Soumuya, J., and Yalavarthy, P.K. (2021). Design and Implementation of Deep Learning Based Contactless Authentication System Using Hand Gestures. Electronics, 10.","DOI":"10.3390\/electronics10020182"},{"key":"ref_54","first-page":"398","article-title":"Deep learning based static hand gesture recognition","volume":"21","author":"Satybaldina","year":"2021","journal-title":"Indones. J. Electr. Eng. Comput. Sci."},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Tateno, S., Liu, H., and Ou, J. (2020). Development of sign language motion recognition system for hearing-impaired people using electromyography signal. Sensors, 20.","DOI":"10.3390\/s20205807"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"119614","DOI":"10.1016\/j.eswa.2023.119614","article-title":"Touchscreen gestures as images. A transfer learning approach for soft biometric traits recognition","volume":"219","author":"Guarino","year":"2023","journal-title":"Expert Syst. Appl."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"107020","DOI":"10.1016\/j.apacoust.2019.107020","article-title":"Trends in audio signal feature extraction methods","volume":"158","author":"Sharma","year":"2020","journal-title":"Appl. Acoust."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"22022","DOI":"10.1038\/s41598-022-26375-9","article-title":"Acoustic speech features in social comparison: How stress impacts the way you sound","volume":"12","author":"Kappen","year":"2022","journal-title":"Sci. Rep."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"91","DOI":"10.4312\/ala.12.2.91-113","article-title":"Exceptions vs. Non-exceptions in Sound Changes: Morphological Condition and Frequency","volume":"12","author":"Liu","year":"2022","journal-title":"Acta Linguist. Asiat."},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"20200393","DOI":"10.1098\/rstb.2020.0393","article-title":"Voice modulatory cues to structure across languages and species","volume":"376","author":"Matzinger","year":"2021","journal-title":"Philos. Trans. R. Soc. B"},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"101894","DOI":"10.1016\/j.bspc.2020.101894","article-title":"Speech emotion recognition with deep convolutional neural networks","volume":"59","author":"Issa","year":"2020","journal-title":"Biomed. Signal Process. Control"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.wocn.2019.05.002","article-title":"Sound, structure and meaning: The bases of prominence ratings in English, French and Spanish","volume":"75","author":"Cole","year":"2019","journal-title":"J. Phon."},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"1412","DOI":"10.3389\/fpsyg.2019.01412","article-title":"Real-life language use across different interlocutors: A naturalistic observation study of adults varying in age","volume":"10","author":"Luo","year":"2019","journal-title":"Front. Psychol."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"122","DOI":"10.1016\/j.cortex.2019.02.011","article-title":"Intonation guides sentence processing in the left inferior frontal gyrus","volume":"117","author":"Goucha","year":"2019","journal-title":"Cortex"},{"key":"ref_65","unstructured":"Valle, R., Shih, K., Prenger, R., and Catanzaro, B. (2020). Flowtron: An autoregressive flow-based generative network for text-to-speech synthesis. arXiv."},{"key":"ref_66","unstructured":"Tan, X., Qin, T., Soong, F., and Liu, T.Y. (2021). A survey on neural speech synthesis. arXiv."},{"key":"ref_67","unstructured":"Xu, Y. (2019). The Routledge Handbook of Phonetics, Routledge."},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"870","DOI":"10.1017\/S0272263120000674","article-title":"A crosslinguistic study of the perception of emotional intonation. Influence of the pitch modulations","volume":"43","author":"Cho","year":"2021","journal-title":"Stud. Second. Lang. Acquis."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1109\/JSTSP.2019.2908700","article-title":"Deep learning for audio signal processing","volume":"13","author":"Purwins","year":"2019","journal-title":"IEEE J. Sel. Top. Signal Process."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/14\/6383\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,7,14]],"date-time":"2023-07-14T05:17:23Z","timestamp":1689311843000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/14\/6383"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,7,13]]},"references-count":69,"journal-issue":{"issue":"14","published-online":{"date-parts":[[2023,7]]}},"alternative-id":["s23146383"],"URL":"https:\/\/doi.org\/10.3390\/s23146383","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,7,13]]}}}