{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2023,6,14]],"date-time":"2023-06-14T04:24:36Z","timestamp":1686716676119},"reference-count":42,"publisher":"MDPI AG","issue":"12","license":[{"start":{"date-parts":[[2023,6,12]],"date-time":"2023-06-12T00:00:00Z","timestamp":1686528000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"publisher","award":["NRF-2022R1C1C1008074"],"id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Solubility measurements are essential in various research and industrial fields. With the automation of processes, the importance of automatic and real-time solubility measurements has increased. Although end-to-end learning methods are commonly used for classification tasks, the use of handcrafted features is still important for specific tasks with the limited labeled images of solutions used in industrial settings. In this study, we propose a method that uses computer vision algorithms to extract nine handcrafted features from images and train a DNN-based classifier to automatically classify solutions based on their dissolution states. To validate the proposed method, a dataset was constructed using various solution images ranging from undissolved solutes in the form of fine particles to those completely covering the solution. Using the proposed method, the solubility status can be automatically screened in real time by using a display and camera on a tablet or mobile phone. Therefore, by combining an automatic solubility changing system with the proposed method, a fully automated process could be achieved without human intervention.<\/jats:p>","DOI":"10.3390\/s23125525","type":"journal-article","created":{"date-parts":[[2023,6,13]],"date-time":"2023-06-13T06:00:45Z","timestamp":1686636045000},"page":"5525","source":"Crossref","is-referenced-by-count":0,"title":["Real-Time Automated Solubility Screening Method Using Deep Neural Networks with Handcrafted Features"],"prefix":"10.3390","volume":"23","author":[{"ORCID":"http:\/\/orcid.org\/0009-0009-1172-8543","authenticated-orcid":false,"given":"Minwoo","family":"Jeon","sequence":"first","affiliation":[{"name":"Department of Software Convergence, Kyunghee University, Yongin 17104, Republic of Korea"}]},{"ORCID":"http:\/\/orcid.org\/0009-0003-4912-2084","authenticated-orcid":false,"given":"Geunhyeok","family":"Yu","sequence":"additional","affiliation":[{"name":"Department of Software Convergence, Kyunghee University, Yongin 17104, Republic of Korea"}]},{"given":"Hyundo","family":"Choi","sequence":"additional","affiliation":[{"name":"Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, Republic of Korea"}]},{"given":"Gahee","family":"Kim","sequence":"additional","affiliation":[{"name":"Material Research Center, Samsung Advanced Institute of Technology, Samsung Electronics, Suwon 16678, Republic of Korea"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-3241-8455","authenticated-orcid":false,"given":"Hyoseok","family":"Hwang","sequence":"additional","affiliation":[{"name":"Department of Software Convergence, Kyunghee University, Yongin 17104, Republic of Korea"}]}],"member":"1968","published-online":{"date-parts":[[2023,6,12]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"486","DOI":"10.1021\/op300336n","article-title":"On the Measurement of Solubility","volume":"17","author":"Black","year":"2013","journal-title":"Org. Process Res. Dev."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"577","DOI":"10.13005\/bpj\/1920","article-title":"The importance of solubility for new drug molecules","volume":"13","author":"Coltescu","year":"2020","journal-title":"Biomed. Pharmacol. J."},{"key":"ref_3","first-page":"2","article-title":"The Universality of the Solubility Parameter","volume":"8","author":"Hansen","year":"1969","journal-title":"Ind. Eng. Chem. Prod. Res. Dev."},{"key":"ref_4","unstructured":"Kim, G., Jeon, M., Choi, H.D., Cho, J.K., Choi, Y.S., and Hwang, H. (2023). Automated Solubility Analysis System and Method Using Computer Vision and Machine Learning. arXiv."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"60586","DOI":"10.1109\/ACCESS.2018.2875071","article-title":"A Review of Turbidity Detection Based on Computer Vision","volume":"6","author":"Liu","year":"2018","journal-title":"IEEE Access"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"3165","DOI":"10.1021\/ac9000089","article-title":"Comparison of Nephelometric, UV-Spectroscopic, and HPLC Methods for High-Throughput Determination of Aqueous Drug Solubility in Microtiter Plates","volume":"81","author":"Hoelke","year":"2009","journal-title":"Anal. Chem."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Lee, J., Kim, D., and Kim, T. (2022). Synthesis of Vapochromic Dyes Having Sensing Properties for Vapor Phase of Organic Solvents Used in Semiconductor Manufacturing Processes and Their Application to Textile-Based Sensors. Sensors, 22.","DOI":"10.3390\/s22124487"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"210","DOI":"10.5491\/SHAW.2011.2.3.210","article-title":"Exposure to Volatile Organic Compounds and Possibility of Exposure to By-product Volatile Organic Compounds in Photolithography Processes in Semiconductor Manufacturing Factories","volume":"2","author":"Park","year":"2011","journal-title":"Saf. Health Work"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1151","DOI":"10.1016\/j.chempr.2021.04.007","article-title":"Measuring solubility automatically with vision","volume":"7","author":"Janey","year":"2021","journal-title":"Chem"},{"key":"ref_10","unstructured":"Gunn, S.R. (1998). Support Vector Machines for Classification and Regression, University of Southampton Institutional Repository. ISIS Technical Report."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"3143","DOI":"10.1016\/S0043-1354(98)00051-7","article-title":"Comparison of nephelometric turbidity measurements using wavelengths 400\u2013600 and 860 nm","volume":"32","author":"Hongve","year":"1998","journal-title":"Water Res."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"563","DOI":"10.1016\/S0308-8146(00)00212-0","article-title":"Evaluation of turbidity: Correlation between Kerstez turbidimeter and nephelometric turbidimeter","volume":"71","year":"2000","journal-title":"Food Chem."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.geomorph.2004.04.007","article-title":"An inexpensive turbidimeter for monitoring suspended sediment","volume":"68","author":"Orwin","year":"2005","journal-title":"Geomorphology"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"128","DOI":"10.1016\/j.measurement.2015.02.049","article-title":"Turbidimeter and RGB sensor for remote measurements in an aquatic medium","volume":"68","author":"Sampedro","year":"2015","journal-title":"Measurement"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"487","DOI":"10.1016\/j.jpba.2004.11.008","article-title":"HPLC and solubility study of the interaction between pindolol and cyclodextrins","volume":"37","author":"Gazpio","year":"2005","journal-title":"J. Pharm. Biomed. Anal."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"697","DOI":"10.1093\/chromsci\/bmaa109","article-title":"Application of a Validated RP-HPLC Method in Solubility and Dissolution Testing for Simultaneous Estimation of Diacerein and Its Active Metabolite Rhein in Presence of Coformers in the Eutectic Tablet Formulation","volume":"59","author":"Patel","year":"2021","journal-title":"J. Chromatogr. Sci."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"139","DOI":"10.1016\/j.supflu.2007.11.002","article-title":"Solubility measurements of noble metal acetylacetonates in supercritical carbon dioxide by high performance liquid chromatography (HPLC)","volume":"44","author":"Yoda","year":"2008","journal-title":"J. Supercrit. Fluids"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"54","DOI":"10.1016\/j.aca.2009.05.042","article-title":"Liquid\u2013liquid extraction in flow analysis: A critical review","volume":"652","author":"Silvestre","year":"2009","journal-title":"Anal. Chim. Acta"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"690","DOI":"10.1021\/ie50390a011","article-title":"Liquid -Liquid Extraction Data -Toluene and Acetaldehyde Systems","volume":"34","author":"Othmer","year":"1942","journal-title":"Ind. Eng. Chem."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"102176","DOI":"10.1016\/j.isci.2021.102176","article-title":"Automated solubility screening platform using computer vision","volume":"24","author":"Shiri","year":"2021","journal-title":"iScience"},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Pizzuto, G., De Berardinis, J., Longley, L., Fakhruldeen, H., and Cooper, A.I. (2022, January 18\u201323). SOLIS: Autonomous Solubility Screening using Deep Neural Networks. Proceedings of the 2022 International Joint Conference on Neural Networks (IJCNN), Padua, Italy.","DOI":"10.1109\/IJCNN55064.2022.9892533"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., and Girshick, R. (2018). Mask R-CNN. arXiv.","DOI":"10.1109\/ICCV.2017.322"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1162\/neco_a_00990","article-title":"Deep Convolutional Neural Networks for Image Classification: A Comprehensive Review","volume":"29","author":"Rawat","year":"2017","journal-title":"Neural Comput."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"Yuen, H.K., Princen, J., Dlingworth, J., and Kittler, J. (1989, January 25\u201328). A Comparative Study of Hough Transform Methods for Circle Finding. Proceedings of the Alvey Vision Conference 1989, Reading, UK.","DOI":"10.5244\/C.3.29"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"352","DOI":"10.1016\/j.neucom.2021.05.099","article-title":"Unsupervised moir\u00e9 pattern removal for recaptured screen images","volume":"456","author":"Yue","year":"2021","journal-title":"Neurocomputing"},{"key":"ref_26","unstructured":"Buades, A., Coll, B., and Morel, J.M. (2005, January 20\u201325). A non-local algorithm for image denoising. Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR\u201905), San Diego, CA, USA."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1080\/2151237X.2007.10129236","article-title":"Adaptive thresholding using the integral image","volume":"12","author":"Bradley","year":"2007","journal-title":"J. Graph. Tools"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1479","DOI":"10.1016\/0031-3203(92)90121-X","article-title":"Gabor filter-based edge detection","volume":"25","author":"Mehrotra","year":"1992","journal-title":"Pattern Recognit."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"721","DOI":"10.1016\/S0031-3203(00)00023-6","article-title":"On the Canny edge detector","volume":"34","author":"Ding","year":"2001","journal-title":"Pattern Recognit."},{"key":"ref_30","unstructured":"Galamhos, C., Matas, J., and Kittler, J. (1999, January 23\u201325). Progressive probabilistic Hough transform for line detection. Proceedings of the 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149), Fort Collins, CO, USA."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"119","DOI":"10.1006\/cviu.1999.0831","article-title":"Robust Detection of Lines Using the Progressive Probabilistic Hough Transform","volume":"78","author":"Matas","year":"2000","journal-title":"Comput. Vis. Image Underst."},{"key":"ref_32","unstructured":"Serra, J., and Soille, P. (1994). Computational Imaging and Vision, Springer."},{"key":"ref_33","unstructured":"Zhang, Z., and Sabuncu, M.R. (2018). Generalized Cross Entropy Loss for Training Deep Neural Networks with Noisy Labels. arXiv."},{"key":"ref_34","unstructured":"Kingma, D.P., and Ba, J. (2017). Adam: A Method for Stochastic Optimization. arXiv."},{"key":"ref_35","unstructured":"Agarap, A.F. (2019). Deep Learning using Rectified Linear Units (ReLU). arXiv."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"569","DOI":"10.1109\/TPAMI.2009.187","article-title":"Sensitivity Analysis of k-Fold Cross Validation in Prediction Error Estimation","volume":"32","author":"Rodriguez","year":"2010","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep Residual Learning for Image Recognition. arXiv.","DOI":"10.1109\/CVPR.2016.90"},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Szegedy, C., Vanhoucke, V., Ioffe, S., Shlens, J., and Wojna, Z. (2015). Rethinking the Inception Architecture for Computer Vision. arXiv.","DOI":"10.1109\/CVPR.2016.308"},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Huang, G., Liu, Z., van der Maaten, L., and Weinberger, K.Q. (2018). Densely Connected Convolutional Networks. arXiv.","DOI":"10.1109\/CVPR.2017.243"},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., and Chen, L.C. (2019). MobileNetV2: Inverted Residuals and Linear Bottlenecks. arXiv.","DOI":"10.1109\/CVPR.2018.00474"},{"key":"ref_41","doi-asserted-by":"crossref","unstructured":"Howard, A., Sandler, M., Chu, G., Chen, L.C., Chen, B., Tan, M., Wang, W., Zhu, Y., Pang, R., and Vasudevan, V. (2019). Searching for MobileNetV3. arXiv.","DOI":"10.1109\/ICCV.2019.00140"},{"key":"ref_42","unstructured":"Tang, Y. (2015). Deep Learning using Linear Support Vector Machines. arXiv."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/12\/5525\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,6,13]],"date-time":"2023-06-13T06:33:30Z","timestamp":1686638010000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/12\/5525"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,6,12]]},"references-count":42,"journal-issue":{"issue":"12","published-online":{"date-parts":[[2023,6]]}},"alternative-id":["s23125525"],"URL":"https:\/\/doi.org\/10.3390\/s23125525","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,6,12]]}}}