{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,6]],"date-time":"2025-01-06T10:40:22Z","timestamp":1736160022464,"version":"3.32.0"},"reference-count":58,"publisher":"MDPI AG","issue":"10","license":[{"start":{"date-parts":[[2023,5,15]],"date-time":"2023-05-15T00:00:00Z","timestamp":1684108800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100012190","name":"Ministry of Science and Higher Education of the Russian Federation","doi-asserted-by":"crossref","id":[{"id":"10.13039\/501100012190","id-type":"DOI","asserted-by":"crossref"}]},{"name":"National Key Research and Development Program of China","award":["2021YFB1407002"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Global navigation satellite systems (GNSS) provide a great data source about the ionosphere state. These data can be used for testing ionosphere models. We studied the performance of nine ionospheric models (Klobuchar, NeQuickG, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC) both in the total electron content (TEC) domain\u2014i.e., how precise the models calculate TEC\u2014and in the positioning error domain\u2014i.e., how the models improve single frequency positioning. The whole data set covers 20 years (2000\u20132020) from 13 GNSS stations, but the main analysis involves data during 2014\u20132020 when calculations are available from all the models. We used single-frequency positioning without ionospheric correction and with correction via global ionospheric maps (IGSG) data as expected limits for errors. Improvements against noncorrected solution were as follows: GIM IGSG\u201422.0%, BDGIM\u201415.3%, NeQuick2\u201413.8%, GEMTEC\u201413.3%, NeQuickG and IRI-2016\u201413.3%, Klobuchar\u201413.2%, IRI-2012\u201411.6%, IRI-Plas\u20148.0%, GLONASS\u20147.3%. TEC bias and mean absolute TEC errors for the models are as follows: GEMTEC\u2014\u22120.3 and 2.4 TECU, BDGIM\u2014\u22120.7 and 2.9 TECU, NeQuick2\u2014\u22121.2 and 3.5 TECU, IRI-2012\u2014\u22121.5 and 3.2 TECU, NeQuickG\u2014\u22121.5 and 3.5 TECU, IRI-2016\u2014\u22121.8 and 3.2 TECU, Klobuchar\u20141.2 and 4.9 TECU, GLONASS\u2014\u22121.9 and 4.8 TECU, and IRI-Plas\u20143.1 and 4.2 TECU. While TEC and positioning domains differ, new-generation operational models (BDGIM and NeQuickG) could overperform or at least be at the same level as classical empirical models.<\/jats:p>","DOI":"10.3390\/s23104773","type":"journal-article","created":{"date-parts":[[2023,5,16]],"date-time":"2023-05-16T06:27:04Z","timestamp":1684218424000},"page":"4773","source":"Crossref","is-referenced-by-count":8,"title":["Klobuchar, NeQuickG, BDGIM, GLONASS, IRI-2016, IRI-2012, IRI-Plas, NeQuick2, and GEMTEC Ionospheric Models: A Comparison in Total Electron Content and Positioning Domains"],"prefix":"10.3390","volume":"23","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-3098-224X","authenticated-orcid":false,"given":"Yury V.","family":"Yasyukevich","sequence":"first","affiliation":[{"name":"Institute of Solar-Terrestrial Physics SB RAS, 664033 Irkutsk, Russia"}]},{"given":"Dmitry","family":"Zatolokin","sequence":"additional","affiliation":[{"name":"Institute of Solar-Terrestrial Physics SB RAS, 664033 Irkutsk, Russia"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-0190-2140","authenticated-orcid":false,"given":"Artem","family":"Padokhin","sequence":"additional","affiliation":[{"name":"Pushkov Institute of Terrestrial Magnetism, Ionosphere and Radio Wave Propagation, Russian Academy of Sciences, 108840 Moscow, Russia"},{"name":"Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia"}]},{"given":"Ningbo","family":"Wang","sequence":"additional","affiliation":[{"name":"Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100864, China"}]},{"given":"Bruno","family":"Nava","sequence":"additional","affiliation":[{"name":"The Abdus Salam International Centre for Theoretical Physics, I-34151 Trieste, Italy"}]},{"given":"Zishen","family":"Li","sequence":"additional","affiliation":[{"name":"Aerospace Information Research Institute (AIR), Chinese Academy of Sciences (CAS), Beijing 100864, China"}]},{"given":"Yunbin","family":"Yuan","sequence":"additional","affiliation":[{"name":"Innovation Academy for Precision Measurement Science and Technology (APM), Chinese Academy of Sciences (CAS), Wuhan 430074, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8456-1697","authenticated-orcid":false,"given":"Anna","family":"Yasyukevich","sequence":"additional","affiliation":[{"name":"Institute of Solar-Terrestrial Physics SB RAS, 664033 Irkutsk, Russia"}]},{"ORCID":"https:\/\/orcid.org\/0000-0002-9896-5841","authenticated-orcid":false,"given":"Chuanfu","family":"Chen","sequence":"additional","affiliation":[{"name":"Faculty of Physics, Lomonosov Moscow State University, 119991 Moscow, Russia"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-8907-2710","authenticated-orcid":false,"given":"Artem","family":"Vesnin","sequence":"additional","affiliation":[{"name":"Institute of Solar-Terrestrial Physics SB RAS, 664033 Irkutsk, Russia"}]}],"member":"1968","published-online":{"date-parts":[[2023,5,15]]},"reference":[{"key":"ref_1","unstructured":"Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E. (2008). GNSS\u2014Global Navigation Satellite Systems. GPS, GLONASS, Galileo, and More, Springer."},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"A27","DOI":"10.1051\/swsc\/2013049","article-title":"A Review of GPS\/GLONASS Studies of the Ionospheric Response to Natural and Anthropogenic Processes and Phenomena","volume":"3","author":"Afraimovich","year":"2013","journal-title":"J. Space Weather Space Clim."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"361","DOI":"10.2151\/jmsj.2004.361","article-title":"Near Real Time GPS Water Vapor Monitoring for Numerical Weather Prediction in Germany","volume":"82","author":"Gendt","year":"2004","journal-title":"J. Meteorol. Soc. Jpn."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"9961","DOI":"10.1029\/97JB00514","article-title":"Global Plate Velocities from the Global Positioning System","volume":"102","author":"Larson","year":"1997","journal-title":"J. Geophys. Res."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Morton, Y.T.J., Diggelen, F., Spilker, J.J., Parkinson, B.W., Lo, S., and Gao, G. (2020). Position, Navigation, and Timing Technologies in the 21st Century, Wiley-IEEE Press.","DOI":"10.1002\/9781119458449"},{"key":"ref_6","unstructured":"European Union Agency for the Space Programme (2022). EUSPA EO and GNSS Market Report.2022\/Issue 1, Publications Office."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"23035","DOI":"10.1029\/2000JA000035","article-title":"Sami2 is Another Model of the Ionosphere (SAMI2): A New Low-Latitude Ionosphere Model","volume":"105","author":"Huba","year":"2000","journal-title":"J. Geophys. Res."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1007\/BF00879812","article-title":"Global Model of the Thermosphere-Ionosphere-Protonosphere System","volume":"127","author":"Namgaladze","year":"1988","journal-title":"PAGEOPH"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"418","DOI":"10.1002\/2016SW001593","article-title":"International Reference Ionosphere 2016: From Ionospheric Climate to Real-time Weather Predictions","volume":"15","author":"Bilitza","year":"2017","journal-title":"Space Weather"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"1856","DOI":"10.1016\/j.jastp.2008.01.015","article-title":"A New Version of the NeQuick Ionosphere Electron Density Model","volume":"70","author":"Nava","year":"2008","journal-title":"J. Atmos. Sol.-Terr. Phys."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2002RS002794","article-title":"Global Assimilation of Ionospheric Measurements (GAIM): Global Assimilation of Ionospheric Measurements","volume":"39","author":"Schunk","year":"2004","journal-title":"Radio Sci."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"2011RS004952","DOI":"10.1029\/2011RS004952","article-title":"Assimilation of GIRO Data into a Real-Time IRI","volume":"47","author":"Galkin","year":"2012","journal-title":"Radio Sci."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"263","DOI":"10.1007\/s00190-008-0266-1","article-title":"The IGS VTEC Maps: A Reliable Source of Ionospheric Information since 1998","volume":"83","author":"Juan","year":"2009","journal-title":"J. Geod."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"191","DOI":"10.1007\/s00190-008-0300-3","article-title":"The International GNSS Service in a Changing Landscape of Global Navigation Satellite Systems","volume":"83","author":"Dow","year":"2009","journal-title":"J. Geod."},{"key":"ref_15","unstructured":"(2023, January 01). NAVSTAR GPS Space Segment\/Navigation User Segment Interfaces, Available online: https:\/\/www.gps.gov\/technical\/icwg\/."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"325","DOI":"10.1109\/TAES.1987.310829","article-title":"Ionospheric Time-Delay Algorithm for Single-Frequency GPS Users","volume":"AES-23","author":"Klobuchar","year":"1987","journal-title":"IEEE Trans. Aerosp. Electron. Syst."},{"key":"ref_17","unstructured":"(2023, January 01). European GNSS (Galileo) Open Service\u2014Ionospheric Correction Algorithm for Galileo Single Frequency Users; European Commission. Available online: https:\/\/www.gsc-europa.eu\/sites\/default\/files\/sites\/all\/files\/Galileo_Ionospheric_Model.pdf."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"55","DOI":"10.1002\/navi.292","article-title":"The BeiDou Global Broadcast Ionospheric Delay Correction Model (BDGIM) and Its Preliminary Performance Evaluation Results","volume":"66","author":"Yuan","year":"2019","journal-title":"NAVIGATION"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"97","DOI":"10.1007\/s10291-021-01125-y","article-title":"BeiDou Global Ionospheric Delay Correction Model (BDGIM): Performance Analysis during Different Levels of Solar Conditions","volume":"25","author":"Wang","year":"2021","journal-title":"GPS Solut."},{"key":"ref_20","unstructured":"(2016). General Description of Code Division Multiple Access Signal System. Edition 1.0. Moscow, Russian Space Systems. Available online: https:\/\/russianspacesystems.ru\/bussines\/navigation\/glonass\/interfeysnyy-kontrolnyy-dokument\/."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"A07","DOI":"10.1051\/swsc\/2014004","article-title":"The International Reference Ionosphere 2012\u2014A Model of International Collaboration","volume":"4","author":"Bilitza","year":"2014","journal-title":"J. Space Weather Space Clim."},{"key":"ref_22","unstructured":"Larsen, R.J. (2012). New Developments in the Standard Model, Nova Science Publishers, Inc."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1703","DOI":"10.1016\/j.jastp.2011.03.010","article-title":"Global Empirical Modelling of the Total Electron Content of the Ionosphere for Satellite Radio Navigation Systems","volume":"73","author":"Ivanov","year":"2011","journal-title":"J. Atmos. Sol.-Terr. Phys."},{"key":"ref_24","first-page":"417","article-title":"The NeQuick Model Genesis, Uses and Evolution","volume":"52","author":"Radicella","year":"2009","journal-title":"Ann. Geophys."},{"key":"ref_25","first-page":"53","article-title":"Performance of the Galileo Single-Frequency Ionospheric Correction During In-Orbit Validation","volume":"25","author":"Breeuwer","year":"2014","journal-title":"GPSworld"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"13","DOI":"10.1007\/s10291-019-0931-2","article-title":"NeQuick-G Performance Assessment for Space Applications","volume":"24","author":"Montenbruck","year":"2020","journal-title":"GPS Solut."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Fro\u0144, A., Galkin, I., Krankowski, A., Bilitza, D., Hern\u00e1ndez-Pajares, M., Reinisch, B., Li, Z., Kotulak, K., Zakharenkova, I., and Cherniak, I. (2020). Towards Cooperative Global Mapping of the Ionosphere: Fusion Feasibility for IGS and IRI with Global Climate VTEC Maps. Remote Sens., 12.","DOI":"10.3390\/rs12213531"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1134\/S0010952515040036","article-title":"Optimization and Testing of the GEMTEC Model of Total Electron Content in the Ionosphere","volume":"53","author":"Ivanov","year":"2015","journal-title":"Cosmic Res."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"279","DOI":"10.1007\/BF02521844","article-title":"Contributions to the Theory of Atmospheric Refraction","volume":"105","author":"Saastamoinen","year":"1972","journal-title":"Bull. Geodesique"},{"key":"ref_30","unstructured":"Zatolokin, D. (Program to Solve the GNSS Navigation Problem \u201cNavi\u201d: Certificate of State Registration of the Software No. 2020612010, 2020). Program to Solve the GNSS Navigation Problem \u201cNavi\u201d: Certificate of State Registration of the Software No. 2020612010, (In Russian)."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"691","DOI":"10.1007\/s00190-017-1088-9","article-title":"Consistency of Seven Different GNSS Global Ionospheric Mapping Techniques during One Solar Cycle","volume":"92","author":"Krankowski","year":"2018","journal-title":"J. Geod."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"1247","DOI":"10.5194\/gmd-7-1247-2014","article-title":"Root Mean Square Error (RMSE) or Mean Absolute Error (MAE)?\u2014Arguments against Avoiding RMSE in the Literature","volume":"7","author":"Chai","year":"2014","journal-title":"Geosci. Model Dev."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"929","DOI":"10.5047\/eps.2011.04.007","article-title":"Inter-Hemispheric Imaging of the Ionosphere with the Upgraded IRI-Plas Model during the Space Weather Storms","volume":"63","author":"Gulyaeva","year":"2011","journal-title":"Earth Planets Space"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1007\/s10291-019-0918-z","article-title":"Assessing the Quality of Ionospheric Models through GNSS Positioning Error: Methodology and Results","volume":"24","author":"Juan","year":"2020","journal-title":"GPS Solut."},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"959","DOI":"10.1016\/j.asr.2012.09.039","article-title":"Evaluation of COMPASS Ionospheric Model in GNSS Positioning","volume":"51","author":"Wu","year":"2013","journal-title":"Adv. Space Res."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1134\/S0016793216030075","article-title":"Comparative Quality Analysis of Models of Total Electron Content in the Ionosphere","volume":"56","author":"Ivanov","year":"2016","journal-title":"Geomagn. Aeron."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"19","DOI":"10.1007\/s10291-020-01055-1","article-title":"GIMLi: Global Ionospheric Total Electron Content Model Based on Machine Learning","volume":"25","author":"Zhukov","year":"2021","journal-title":"GPS Solut."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"1803","DOI":"10.1016\/j.asr.2017.10.003","article-title":"NeQuick 2 and IRI Plas VTEC Predictions for Low Latitude and South American Sector","volume":"61","author":"Ezquer","year":"2018","journal-title":"Adv. Space Res."},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.jastp.2018.02.006","article-title":"Assessment of the NeQuick-2 and IRI-Plas 2017 Models Using Global and Long-Term GNSS Measurements","volume":"170","author":"Okoh","year":"2018","journal-title":"J. Atmos. Sol.-Terr. Phys."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"2070","DOI":"10.1016\/j.asr.2014.07.027","article-title":"Vertical TEC Representation by IRI 2012 and IRI Plas Models for European Midlatitudes","volume":"55","author":"Zakharenkova","year":"2015","journal-title":"Adv. Space Res."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"504","DOI":"10.1016\/j.jastp.2018.08.007","article-title":"The Performance of the IRI-Plas Model as Compared with Alouette II and GIM-TEC Data over the Midlatitude Station Alma-Ata","volume":"179","author":"Gordiyenko","year":"2018","journal-title":"J. Atmos. Sol.-Terr. Phys."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"2046","DOI":"10.1016\/j.asr.2019.04.014","article-title":"An Evaluation of the IRI-Plas-TEC for Winter Anomaly along the Mid-Latitude Sector Based on GIM-TEC and FoF2 Values","volume":"64","author":"Gordiyenko","year":"2019","journal-title":"Adv. Space Res."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1016\/j.asr.2013.11.005","article-title":"Validation of the Neustrelitz Global Model According to the Low Latitude Ionosphere","volume":"54","author":"Maltseva","year":"2014","journal-title":"Adv. Space Res."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"41","DOI":"10.1007\/s10291-019-0833-3","article-title":"Fast Ionospheric Correction Using Galileo Az Coefficients and the NTCM Model","volume":"23","author":"Hoque","year":"2019","journal-title":"GPS Solut."},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1029\/2010RS004620","article-title":"Total Electron Content Models and Their Use in Ionosphere Monitoring","volume":"46","author":"Jakowski","year":"2011","journal-title":"Radio Sci."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"1970","DOI":"10.1515\/acgeo-2016-0075","article-title":"Variability of Ionospheric TEC and the Performance of the IRI-2012 Model at the BJFS Station, China","volume":"64","author":"Li","year":"2016","journal-title":"Acta Geophys."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"1948","DOI":"10.1016\/j.asr.2014.09.004","article-title":"Study of Ionospheric TEC from GPS Observations and Comparisons with IRI and SPIM Model Predictions in the Low Latitude Anomaly Indian Subcontinental Region","volume":"55","author":"Panda","year":"2015","journal-title":"Adv. Space Res."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"990","DOI":"10.1016\/j.asr.2010.06.010","article-title":"Cross Testing of Ionosphere Models IRI-2001 and IRI-2007, Data from Satellite Altimeters (Topex\/Poseidon and Jason-1) and Global Ionosphere Maps","volume":"46","author":"Yasyukevich","year":"2010","journal-title":"Adv. Space Res."},{"key":"ref_49","first-page":"28","article-title":"Space Weather: Risk Factors for Global Navigation Satellite Systems","volume":"7","author":"Demyanov","year":"2021","journal-title":"Sol.-Terr. Phys."},{"key":"ref_50","first-page":"339","article-title":"Comparison of Total Electron Content Obtained from GPS with IRI","volume":"25","author":"Ephishov","year":"2000","journal-title":"Phys. Chem. Earth Part C Sol. Terr. Planet. Sci."},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"365","DOI":"10.5047\/eps.2011.01.010","article-title":"Comparison of GPS TEC Measurements with IRI TEC Prediction at the Equatorial Latitude Station, Chumphon, Thailand","volume":"63","author":"Kenpankho","year":"2011","journal-title":"Earth Planets Space"},{"key":"ref_52","unstructured":"Angrisano, A., Gaglione, S., Gioia, C., Massaro, M., Robustelli, U., and Santamaria, R. (December, January 29). Ionospheric Models Comparison for Single-Frequency GNSS Positioning. Proceedings of the European Navigation Conference\u2014ENC 2011, London, UK."},{"key":"ref_53","doi-asserted-by":"crossref","unstructured":"Wang, L., Wei, E., Xiong, S., Zhang, T., and Shen, Z. (2022). Evaluation of NeQuick2 Model over Mid-Latitudes of Northern Hemisphere. Remote Sens., 14.","DOI":"10.3390\/rs14164124"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"397","DOI":"10.1007\/s00190-016-0971-0","article-title":"Ionospheric Error Contribution to GNSS Single-Frequency Navigation at the 2014 Solar Maximum","volume":"91","year":"2017","journal-title":"J. Geod."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"e2019SW002422","DOI":"10.1029\/2019SW002422","article-title":"Assessment and Validation of Three Ionospheric Models (IRI-2016, NeQuick2, and IGS-GIM) From 2002 to 2018","volume":"18","author":"Chen","year":"2020","journal-title":"Space Weather"},{"key":"ref_56","first-page":"69","article-title":"Analyzing Existing Applied Models of the Ionosphere for Calculating Radio Wave Propagation and Possibility of Their Use for Radar Systems. I. Classification of Applied Models and the Main Requirements Imposed on Them for Radar Aids","volume":"6","author":"Aksenov","year":"2020","journal-title":"Sol.-Terr. Phys."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"e2022SW003103","DOI":"10.1029\/2022SW003103","article-title":"An Investigation of Ionospheric TEC Prediction Maps Over China Using Bidirectional Long Short-Term Memory Method","volume":"20","author":"Shi","year":"2022","journal-title":"Space Weather"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1007\/s10291-020-00983-2","article-title":"SIMuRG: System for Ionosphere Monitoring and Research from GNSS","volume":"24","author":"Yasyukevich","year":"2020","journal-title":"GPS Solut."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/10\/4773\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,6]],"date-time":"2025-01-06T09:44:22Z","timestamp":1736156662000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/10\/4773"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,5,15]]},"references-count":58,"journal-issue":{"issue":"10","published-online":{"date-parts":[[2023,5]]}},"alternative-id":["s23104773"],"URL":"https:\/\/doi.org\/10.3390\/s23104773","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2023,5,15]]}}}