{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T11:10:08Z","timestamp":1729336208646,"version":"3.27.0"},"reference-count":77,"publisher":"MDPI AG","issue":"9","license":[{"start":{"date-parts":[[2023,4,27]],"date-time":"2023-04-27T00:00:00Z","timestamp":1682553600000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"National Institute of Biomedical Imaging","award":["U01 EB024450"]},{"name":"Bioengineering (NIBIB) at the National Institutes of Health","award":["U01 EB026976"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"In blood-oxygen-level-dependent (BOLD)-based resting-state functional (RS-fMRI) studies, usage of multi-echo echo-planar-imaging (ME-EPI) is limited due to unacceptable late echo times when high spatial resolution is used. Equipped with high-performance gradients, the compact 3T MRI system (C3T) enables a three-echo whole-brain ME-EPI protocol with smaller than 2.5 mm isotropic voxel and shorter than 1 s repetition time, as required in landmark fMRI studies. The performance of the ME-EPI was comprehensively evaluated with signal variance reduction and region-of-interest-, seed- and independent-component-analysis-based functional connectivity analyses and compared with a counterpart of single-echo EPI with the shortest TR possible. Through the multi-echo combination, the thermal noise level is reduced. Functional connectivity, as well as signal intensity, are recovered in the medial orbital sulcus and anterior transverse collateral sulcus in ME-EPI. It is demonstrated that ME-EPI provides superior sensitivity and accuracy for detecting functional connectivity and\/or brain networks in comparison with single-echo EPI. In conclusion, the high-performance gradient enabled high-spatial-temporal resolution ME-EPI would be the method of choice for RS-fMRI study on the C3T.<\/jats:p>","DOI":"10.3390\/s23094329","type":"journal-article","created":{"date-parts":[[2023,4,28]],"date-time":"2023-04-28T06:02:23Z","timestamp":1682661743000},"page":"4329","source":"Crossref","is-referenced-by-count":2,"title":["Improved Resting-State Functional MRI Using Multi-Echo Echo-Planar Imaging on a Compact 3T MRI Scanner with High-Performance Gradients"],"prefix":"10.3390","volume":"23","author":[{"ORCID":"http:\/\/orcid.org\/0000-0003-3792-3303","authenticated-orcid":false,"given":"Daehun","family":"Kang","sequence":"first","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-8001-6237","authenticated-orcid":false,"given":"Myung-Ho","family":"In","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"}]},{"given":"Hang Joon","family":"Jo","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"},{"name":"Department of Physiology, Hanyang University, Seoul 04763, Republic of Korea"}]},{"given":"Maria A.","family":"Halverson","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"}]},{"given":"Nolan K.","family":"Meyer","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"},{"name":"Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0001-5648-0590","authenticated-orcid":false,"given":"Zaki","family":"Ahmed","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"}]},{"given":"Erin M.","family":"Gray","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"}]},{"given":"Radhika","family":"Madhavan","sequence":"additional","affiliation":[{"name":"GE Global Research, Niskayuna, NY 12309, USA"}]},{"given":"Thomas K.","family":"Foo","sequence":"additional","affiliation":[{"name":"GE Global Research, Niskayuna, NY 12309, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-8693-2313","authenticated-orcid":false,"given":"Brice","family":"Fernandez","sequence":"additional","affiliation":[{"name":"GE Healthcare, 78530 Buc, France"}]},{"given":"David F.","family":"Black","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"}]},{"given":"Kirk M.","family":"Welker","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"}]},{"given":"Joshua D.","family":"Trzasko","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0003-0584-9460","authenticated-orcid":false,"suffix":"III","given":"John","family":"Huston","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"}]},{"given":"Matt A.","family":"Bernstein","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7521-9088","authenticated-orcid":false,"given":"Yunhong","family":"Shu","sequence":"additional","affiliation":[{"name":"Department of Radiology, Mayo Clinic, Rochester, MN 55905, USA"}]}],"member":"1968","published-online":{"date-parts":[[2023,4,27]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"9868","DOI":"10.1073\/pnas.87.24.9868","article-title":"Brain magnetic resonance imaging with contrast dependent on blood oxygenation","volume":"87","author":"Ogawa","year":"1990","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"380","DOI":"10.1002\/mrm.1910300317","article-title":"Tesla gradient recalled echo characteristics of photic stimulation-induced signal changes in the human primary visual cortex","volume":"30","author":"Menon","year":"1993","journal-title":"Magn. Reson. Med."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1002\/mrm.1910400210","article-title":"Functional imaging by I0- and T2*-parameter mapping using multi-image EPI","volume":"40","author":"Speck","year":"1998","journal-title":"Magn. Reson. Med. J. Soc. Magn. Reson. Med. Soc. Magn. Reson. Med."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"1227","DOI":"10.1002\/mrm.20900","article-title":"BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: Parallel-acquired inhomogeneity-desensitized fMRI","volume":"55","author":"Poser","year":"2006","journal-title":"Magn. Reson. Med."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.mri.2017.10.017","article-title":"Estimation of physiological sources of nonlinearity in blood oxygenation level-dependent contrast signals","volume":"46","author":"Kang","year":"2018","journal-title":"Magn. Reson. Imaging"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"794","DOI":"10.1002\/jmri.20587","article-title":"Principles of magnetic resonance assessment of brain function","volume":"23","author":"Norris","year":"2006","journal-title":"J. Magn. Reson. Imaging"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"43","DOI":"10.1016\/j.dcn.2018.03.001","article-title":"The Adolescent Brain Cognitive Development (ABCD) study: Imaging acquisition across 21 sites","volume":"32","author":"Casey","year":"2018","journal-title":"Dev. Cogn. Neuros-Neth"},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"P104","DOI":"10.1016\/j.jalz.2017.06.2411","article-title":"ADNI-3 MRI PROTOCOL","volume":"13","author":"Gunter","year":"2017","journal-title":"Alzheimer\u2019s Dement."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1016\/j.neuroimage.2013.04.127","article-title":"The minimal preprocessing pipelines for the Human Connectome Project","volume":"80","author":"Glasser","year":"2013","journal-title":"Neuroimage"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"1210","DOI":"10.1002\/mrm.23097","article-title":"Blipped-controlled aliasing in parallel imaging for simultaneous multislice echo planar imaging with reduced g-factor penalty","volume":"67","author":"Setsompop","year":"2012","journal-title":"Magn. Reson. Med."},{"key":"ref_11","doi-asserted-by":"crossref","first-page":"1202","DOI":"10.1002\/mrm.10171","article-title":"Generalized autocalibrating partially parallel acquisitions (GRAPPA)","volume":"47","author":"Griswold","year":"2002","journal-title":"Magn. Reson. Med."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"952","DOI":"10.1002\/(SICI)1522-2594(199911)42:5<952::AID-MRM16>3.0.CO;2-S","article-title":"SENSE: Sensitivity encoding for fast MRI","volume":"42","author":"Pruessmann","year":"1999","journal-title":"Magn. Reson. Med."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"32","DOI":"10.1016\/j.neuroimage.2015.08.056","article-title":"Evaluation of 2D multiband EPI imaging for high-resolution, whole-brain, task-based fMRI studies at 3T: Sensitivity and slice leakage artifacts","volume":"124","author":"Todd","year":"2016","journal-title":"Neuroimage"},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"243","DOI":"10.1016\/j.neuroimage.2005.01.007","article-title":"Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters","volume":"26","author":"Triantafyllou","year":"2005","journal-title":"NeuroImage"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"565","DOI":"10.1016\/j.neuroimage.2006.09.032","article-title":"How long to scan? The relationship between fMRI temporal signal to noise ratio and necessary scan duration","volume":"34","author":"Murphy","year":"2007","journal-title":"Neuroimage"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"109746","DOI":"10.1016\/j.jneumeth.2022.109746","article-title":"Robust high spatio-temporal line-scanning fMRI in humans at 7T using multi-echo readouts, denoising and prospective motion correction","volume":"384","author":"Raimondo","year":"2023","journal-title":"J. Neurosci. Methods"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"1608","DOI":"10.1002\/mrm.29305","article-title":"Development of a novel 10-echo multi-contrast sequence based on EPIK to deliver simultaneous quantification of T(2) and T(2)(*) with application to oxygen extraction fraction","volume":"88","author":"Kuppers","year":"2022","journal-title":"Magn. Reson. Med."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"119661","DOI":"10.1016\/j.neuroimage.2022.119661","article-title":"Multi-echo investigations of positive and negative CBF and concomitant BOLD changes","volume":"263","author":"Devi","year":"2022","journal-title":"Neuroimage"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"2157","DOI":"10.1002\/mrm.29585","article-title":"Rapid high-fidelity T2* mapping using single-shot overlapping-echo acquisition and deep learning reconstruction","volume":"89","author":"Yang","year":"2023","journal-title":"Magn. Reson. Med."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Valsamis, J.J., Luciw, N.J., Haq, N., Atwi, S., Duchesne, S., Cameron, W., and MacIntosh, B.J. (Magn. Reson. Med., 2023). An imaging-based method of mapping multi-echo BOLD intracranial pulsatility, Magn. Reson. Med., online early view.","DOI":"10.1002\/mrm.29639"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"103139","DOI":"10.1016\/j.nicl.2022.103139","article-title":"Altered brain network topology in children with auditory processing disorder: A resting-state multi-echo fMRI study","volume":"35","author":"Alvand","year":"2022","journal-title":"Neuroimage Clin."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"E2105","DOI":"10.1073\/pnas.1720985115","article-title":"Ridding fMRI data of motion-related influences: Removal of signals with distinct spatial and physical bases in multiecho data","volume":"115","author":"Power","year":"2018","journal-title":"Proc. Natl. Acad. Sci. USA"},{"key":"ref_23","doi-asserted-by":"crossref","unstructured":"Dipasquale, O., Sethi, A., Lagana, M.M., Baglio, F., Baselli, G., Kundu, P., Harrison, N.A., and Cercignani, M. (2017). Comparing resting state fMRI de-noising approaches using multi- and single-echo acquisitions. PLoS ONE, 12.","DOI":"10.1371\/journal.pone.0173289"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"117914","DOI":"10.1016\/j.neuroimage.2021.117914","article-title":"ICA-based denoising strategies in breath-hold induced cerebrovascular reactivity mapping with multi echo BOLD fMRI","volume":"233","author":"Moia","year":"2021","journal-title":"Neuroimage"},{"key":"ref_25","doi-asserted-by":"crossref","first-page":"108540","DOI":"10.1016\/j.celrep.2020.108540","article-title":"Rapid Precision Functional Mapping of Individuals Using Multi-Echo fMRI","volume":"33","author":"Lynch","year":"2020","journal-title":"Cell Rep."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"2232","DOI":"10.1002\/mrm.27175","article-title":"Lightweight, compact, and high-performance 3T MR system for imaging the brain and extremities","volume":"80","author":"Foo","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"1259","DOI":"10.1118\/1.4941362","article-title":"Technical Note: Compact three-tesla magnetic resonance imager with high-performance gradients passes ACR image quality and acoustic noise tests","volume":"43","author":"Weavers","year":"2016","journal-title":"Med. Phys."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"1538","DOI":"10.1002\/mrm.26790","article-title":"B0 concomitant field compensation for MRI systems employing asymmetric transverse gradient coils","volume":"79","author":"Weavers","year":"2018","journal-title":"Magn. Reson. Med."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"2250","DOI":"10.1002\/mrm.26315","article-title":"Gradient pre-emphasis to counteract first-order concomitant fields on asymmetric MRI gradient systems","volume":"77","author":"Tao","year":"2017","journal-title":"Magn. Reson. Med."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"N18","DOI":"10.1088\/1361-6560\/aa524f","article-title":"Gradient nonlinearity calibration and correction for a compact, asymmetric magnetic resonance imaging gradient system","volume":"62","author":"Tao","year":"2017","journal-title":"Phys. Med. Biol."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1939","DOI":"10.1002\/mrm.26044","article-title":"Peripheral nerve stimulation characteristics of an asymmetric head-only gradient coil compatible with a high-channel-count receiver array","volume":"76","author":"Lee","year":"2016","journal-title":"Magn. Reson. Med."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"15NT02","DOI":"10.1088\/1361-6560\/ab99e2","article-title":"Reducing PNS with minimal performance penalties via simple pulse sequence modifications on a high-performance compact 3T scanner","volume":"65","author":"In","year":"2020","journal-title":"Phys. Med. Biol."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"653","DOI":"10.1002\/jmri.25210","article-title":"High slew-rate head-only gradient for improving distortion in echo planar imaging: Preliminary experience","volume":"44","author":"Tan","year":"2016","journal-title":"J. Magn. Reson. Imaging"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1002\/jmri.26792","article-title":"Distortion-free imaging: A double encoding method (DIADEM) combined with multiband imaging for rapid distortion-free high-resolution diffusion imaging on a compact 3T with high-performance gradients","volume":"51","author":"In","year":"2020","journal-title":"J. Magn. Reson. Imaging"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"235024","DOI":"10.1088\/1361-6560\/abb2ec","article-title":"The benefit of high-performance gradients on echo planar imaging for BOLD-based resting-state functional MRI","volume":"65","author":"Kang","year":"2020","journal-title":"Phys. Med. Biol."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"916","DOI":"10.1002\/mrm.21529","article-title":"Improved image reconstruction for partial Fourier gradient-echo echo-planar imaging (EPI)","volume":"59","author":"Chen","year":"2008","journal-title":"Magn. Reson. Med."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"117461","DOI":"10.1016\/j.neuroimage.2020.117461","article-title":"Improved resting state functional connectivity sensitivity and reproducibility using a multiband multi-echo acquisition","volume":"225","author":"Cohen","year":"2021","journal-title":"Neuroimage"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"118244","DOI":"10.1016\/j.neuroimage.2021.118244","article-title":"The effects of multi-echo fMRI combination and rapid T2*-mapping on offline and real-time BOLD sensitivity","volume":"238","author":"Heunis","year":"2021","journal-title":"Neuroimage"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"65","DOI":"10.1016\/j.neuroimage.2017.05.005","article-title":"Multi-echo EPI of human fear conditioning reveals improved BOLD detection in ventromedial prefrontal cortex","volume":"156","author":"Fernandez","year":"2017","journal-title":"Neuroimage"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"113","DOI":"10.1016\/j.cobeha.2021.03.017","article-title":"Improving precision functional mapping routines with multi-echo fMRI","volume":"40","author":"Lynch","year":"2021","journal-title":"Curr. Opin. Behav. Sci."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1006\/cbmr.1996.0014","article-title":"AFNI: Software for analysis and visualization of functional magnetic resonance neuroimages","volume":"29","author":"Cox","year":"1996","journal-title":"Comput Biomed. Res."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"162","DOI":"10.1002\/1522-2594(200007)44:1<162::AID-MRM23>3.0.CO;2-E","article-title":"Image-based method for retrospective correction of physiological motion effects in fMRI: RETROICOR","volume":"44","author":"Glover","year":"2000","journal-title":"Magn. Reson. Med."},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"644","DOI":"10.1016\/j.neuroimage.2007.11.059","article-title":"The respiration response function: The temporal dynamics of fMRI signal fluctuations related to changes in respiration","volume":"40","author":"Birn","year":"2008","journal-title":"Neuroimage"},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"571","DOI":"10.1016\/j.neuroimage.2010.04.246","article-title":"Mapping sources of correlation in resting state FMRI, with artifact detection and removal","volume":"52","author":"Jo","year":"2010","journal-title":"Neuroimage"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"935154","DOI":"10.1155\/2013\/935154","article-title":"Effective Preprocessing Procedures Virtually Eliminate Distance-Dependent Motion Artifacts in Resting State FMRI","volume":"2013","author":"Jo","year":"2013","journal-title":"J. Appl. Math."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"103742","DOI":"10.1016\/j.compbiomed.2020.103742","article-title":"Fast detection and reduction of local transient artifacts in resting-state fMRI","volume":"120","author":"Jo","year":"2020","journal-title":"Comput. Biol. Med."},{"key":"ref_47","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1002\/(SICI)1522-2594(199907)42:1<87::AID-MRM13>3.0.CO;2-O","article-title":"Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging","volume":"42","author":"Posse","year":"1999","journal-title":"Magn. Reson. Med."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"117549","DOI":"10.1016\/j.neuroimage.2020.117549","article-title":"Impact of concatenating fMRI data on reliability for functional connectomics","volume":"226","author":"Cho","year":"2021","journal-title":"Neuroimage"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"e77089","DOI":"10.1371\/journal.pone.0077089","article-title":"On the definition of signal-to-noise ratio and contrast-to-noise ratio for FMRI data","volume":"8","author":"Welvaert","year":"2013","journal-title":"PLoS ONE"},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Saad, Z.S., Reynolds, R.C., Argall, B., Japee, S., and Cox, R.W. (2004, January 18). SUMA: An interface for surface-based intra- and inter-subject analysis with AFNI. Proceedings of the 2004 2nd IEEE International Symposium on Biomedical Imaging: Macro to Nano, Arlington, VA, USA.","DOI":"10.1109\/ISBI.2004.1398837"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1402","DOI":"10.1016\/j.neuroimage.2012.02.084","article-title":"Within-subject template estimation for unbiased longitudinal image analysis","volume":"61","author":"Reuter","year":"2012","journal-title":"Neuroimage"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/j.neuroimage.2010.06.010","article-title":"Automatic parcellation of human cortical gyri and sulci using standard anatomical nomenclature","volume":"53","author":"Destrieux","year":"2010","journal-title":"Neuroimage"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"116189","DOI":"10.1016\/j.neuroimage.2019.116189","article-title":"Automated anatomical labelling atlas 3","volume":"206","author":"Rolls","year":"2020","journal-title":"Neuroimage"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1759","DOI":"10.1016\/j.neuroimage.2011.12.028","article-title":"Differentiating BOLD and non-BOLD signals in fMRI time series using multi-echo EPI","volume":"60","author":"Kundu","year":"2012","journal-title":"NeuroImage"},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Cohen, A.D., Nencka, A.S., Lebel, R.M., and Wang, Y. (2017). Multiband multi-echo imaging of simultaneous oxygenation and flow timeseries for resting state connectivity. PLoS ONE, 12.","DOI":"10.1371\/journal.pone.0169253"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"339","DOI":"10.1089\/brain.2013.0156","article-title":"Correcting brain-wide correlation differences in resting-state FMRI","volume":"3","author":"Saad","year":"2013","journal-title":"Brain Connect"},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"1001","DOI":"10.1098\/rstb.2005.1634","article-title":"Investigations into resting-state connectivity using independent component analysis","volume":"360","author":"Beckmann","year":"2005","journal-title":"Philos. Trans. R. Soc. B Biol. Sci."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"115","DOI":"10.3389\/fnins.2017.00115","article-title":"Using Dual Regression to Investigate Network Shape and Amplitude in Functional Connectivity Analyses","volume":"11","author":"Nickerson","year":"2017","journal-title":"Front Neurosci."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"782","DOI":"10.1016\/j.neuroimage.2011.09.015","article-title":"FSL","volume":"62","author":"Jenkinson","year":"2012","journal-title":"Neuroimage"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"S148","DOI":"10.1016\/S1053-8119(09)71511-3","article-title":"Group comparison of resting-state FMRI data using multi-subject ICA and dual regression","volume":"47","author":"Beckmann","year":"2009","journal-title":"Neuroimage"},{"key":"ref_61","doi-asserted-by":"crossref","first-page":"2142","DOI":"10.1016\/j.neuroimage.2011.10.018","article-title":"Spurious but systematic correlations in functional connectivity MRI networks arise from subject motion","volume":"59","author":"Power","year":"2012","journal-title":"Neuroimage"},{"key":"ref_62","doi-asserted-by":"crossref","unstructured":"Xia, M., Wang, J., and He, Y. (2013). BrainNet Viewer: A network visualization tool for human brain connectomics. PLoS ONE, 8.","DOI":"10.1371\/journal.pone.0068910"},{"key":"ref_63","doi-asserted-by":"crossref","first-page":"2356","DOI":"10.1002\/mrm.28087","article-title":"Highly efficient head-only magnetic field insert gradient coil for achieving simultaneous high gradient amplitude and slew rate at 3.0T (MAGNUS) for brain microstructure imaging","volume":"83","author":"Foo","year":"2020","journal-title":"Magn. Reson. Med."},{"key":"ref_64","doi-asserted-by":"crossref","first-page":"118530","DOI":"10.1016\/j.neuroimage.2021.118530","article-title":"Connectome 2.0: Developing the next-generation ultra-high gradient strength human MRI scanner for bridging studies of the micro-, meso- and macro-connectome","volume":"243","author":"Huang","year":"2021","journal-title":"Neuroimage"},{"key":"ref_65","doi-asserted-by":"crossref","first-page":"748","DOI":"10.1016\/j.mri.2007.02.014","article-title":"T2* measurements in human brain at 1.5, 3 and 7 T","volume":"25","author":"Peters","year":"2007","journal-title":"Magn. Reson. Imaging"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"1140","DOI":"10.1038\/s41467-019-09076-2","article-title":"Characterization of the hemodynamic response function in white matter tracts for event-related fMRI","volume":"10","author":"Li","year":"2019","journal-title":"Nat. Commun."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"120","DOI":"10.1006\/nimg.2001.0985","article-title":"Compensation of susceptibility-induced BOLD sensitivity losses in echo-planar fMRI imaging","volume":"15","author":"Deichmann","year":"2002","journal-title":"Neuroimage"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"110","DOI":"10.1002\/(SICI)1522-2594(199907)42:1<110::AID-MRM15>3.0.CO;2-3","article-title":"Composite image formation in z-shimmed functional MR imaging","volume":"42","author":"Constable","year":"1999","journal-title":"Magn. Reson. Med."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"267","DOI":"10.1016\/j.neuroimage.2015.02.064","article-title":"ICA-AROMA: A robust ICA-based strategy for removing motion artifacts from fMRI data","volume":"112","author":"Pruim","year":"2015","journal-title":"Neuroimage"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"59","DOI":"10.1016\/j.neuroimage.2017.03.033","article-title":"Multi-echo fMRI: A review of applications in fMRI denoising and analysis of BOLD signals","volume":"154","author":"Kundu","year":"2017","journal-title":"Neuroimage"},{"key":"ref_71","doi-asserted-by":"crossref","first-page":"452","DOI":"10.1016\/j.neuroimage.2016.07.049","article-title":"Evaluation of multi-echo ICA denoising for task based fMRI studies: Block designs, rapid event-related designs, and cardiac-gated fMRI","volume":"141","author":"Panwar","year":"2016","journal-title":"Neuroimage"},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"550","DOI":"10.1016\/j.neuroimage.2013.05.099","article-title":"The effect of scan length on the reliability of resting-state fMRI connectivity estimates","volume":"83","author":"Birn","year":"2013","journal-title":"Neuroimage"},{"key":"ref_73","doi-asserted-by":"crossref","first-page":"e00456","DOI":"10.1002\/brb3.456","article-title":"Reliability and reproducibility of individual differences in functional connectivity acquired during task and resting state","volume":"6","author":"Shah","year":"2016","journal-title":"Brain Behav."},{"key":"ref_74","unstructured":"Kang, D., In, M.-H., Gray, E., Foo, T.K., Madhavan, R., Meyer, N.K., Bardwell-Speltz, L.J., Ahmed, Z., Gunter, J., and Fernandez, B. (2021, January 15\u201320). Potential Benefit of Multiband Multiecho EPI for Resting-state Functional MRI in Alzheimer\u2019s disease on a compact 3T system: A Preliminary study. Proceedings of the International Society for Magnetic Resonance in Medicine, Online."},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"854387","DOI":"10.3389\/fnins.2022.854387","article-title":"A Comparison of Single- and Multi-Echo Processing of Functional MRI Data During Overt Autobiographical Recall","volume":"16","author":"Gilmore","year":"2022","journal-title":"Front. Neurosci."},{"key":"ref_76","first-page":"1","article-title":"Accelerated diffusion spectrum imaging with compressed sensing using adaptive dictionaries","volume":"15","author":"Bilgic","year":"2012","journal-title":"Med. Image Comput Comput Assist Interv."},{"key":"ref_77","doi-asserted-by":"crossref","first-page":"401","DOI":"10.1002\/mrm.26649","article-title":"Wave-CAIPI for highly accelerated MP-RAGE imaging","volume":"79","author":"Polak","year":"2018","journal-title":"Magn. Reson. Med."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/9\/4329\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,10,19]],"date-time":"2024-10-19T10:38:13Z","timestamp":1729334293000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/9\/4329"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,4,27]]},"references-count":77,"journal-issue":{"issue":"9","published-online":{"date-parts":[[2023,5]]}},"alternative-id":["s23094329"],"URL":"https:\/\/doi.org\/10.3390\/s23094329","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2023,4,27]]}}}