{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:14:46Z","timestamp":1728177286040},"reference-count":95,"publisher":"MDPI AG","issue":"7","license":[{"start":{"date-parts":[[2023,3,26]],"date-time":"2023-03-26T00:00:00Z","timestamp":1679788800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100003725","name":"National Research Foundation of Korea","doi-asserted-by":"publisher","award":["2020R1A2C4001606"],"id":[{"id":"10.13039\/501100003725","id-type":"DOI","asserted-by":"publisher"}]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"An inverse Class-E power amplifier was designed for an ultrasound transducer. The proposed inverse Class-E power amplifier can be useful because of the low series inductance values used in the output matching network that helps to reduce signal distortions. Therefore, a newly designed Class-E power amplifier can obtain a proper echo signal quality. The measured output voltage, voltage gain, voltage gain difference, and power efficiency were 50.1 V, 22.871 dB, 0.932 dB, and 55.342%, respectively. This low voltage difference and relatively high efficiency could verify the capability of the ultrasound transducer. The pulse-echo response experiment using an ultrasound transducer was performed to verify the capability of the proposed inverse Class-E power amplifier. The obtained echo signal amplitude and pulse width were 6.01 mVp-p and 0.81 \u03bcs, respectively. The \u22126 dB bandwidth and center frequencies of the echo signal were 27.25 and 9.82 MHz, respectively. Consequently, the designed Class-E power amplifier did not significantly alter the performance of the center frequency of the ultrasound transducer; therefore, it could be employed particularly in certain ultrasound applications that require high linearity and reasonable power efficiency.<\/jats:p>","DOI":"10.3390\/s23073466","type":"journal-article","created":{"date-parts":[[2023,3,27]],"date-time":"2023-03-27T07:01:14Z","timestamp":1679900474000},"page":"3466","source":"Crossref","is-referenced-by-count":6,"title":["An Inverse Class-E Power Amplifier for Ultrasound Transducer"],"prefix":"10.3390","volume":"23","author":[{"given":"Hojong","family":"Choi","sequence":"first","affiliation":[{"name":"Department of Electronic Engineering, Gachon University, Seongnam-daero 1342, Sujeong-gu, Seongnam 13120, Gyeonggi-do, Republic of Korea"}]}],"member":"1968","published-online":{"date-parts":[[2023,3,26]]},"reference":[{"key":"ref_1","unstructured":"Suri, J.S., Kathuria, C., Chang, R.-F., Molinar, F., and Fenster, A. (2008). Advances in Diagnostic and Therapeutic Ultrasound Imaging, Artech House."},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Jung, U., Choi, J.H., Choo, H.T., Kim, G.U., Ryu, J., and Choi, H. (2022). Fully Customized Photoacoustic System Using Doubly Q-Switched Nd: YAG Laser and Multiple Axes Stages for Laboratory Applications. Sensors, 22.","DOI":"10.3390\/s22072621"},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Jung, U., Ryu, J., and Choi, H. (2022). Optical Light Sources and Wavelengths within the Visible and Near-Infrared Range Using Photoacoustic Effects for Biomedical Applications. Biosensors, 12.","DOI":"10.3390\/bios12121154"},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"6580217","DOI":"10.1155\/2017\/6580217","article-title":"Development of an Estimation Instrument of Acoustic Lens Properties for Medical Ultrasound Transducers","volume":"2017","author":"Choi","year":"2017","journal-title":"J. Healthcare Eng."},{"key":"ref_5","doi-asserted-by":"crossref","unstructured":"Postema, M. (2011). Fundamentals of Medical Ultrasound, Taylor and Francis.","DOI":"10.1201\/9781482266641"},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"108519","DOI":"10.1016\/j.apacoust.2021.108519","article-title":"Active echo signals and image optimization techniques via software filter correction of ultrasound system","volume":"188","author":"Jung","year":"2022","journal-title":"Appl. Acoust."},{"key":"ref_7","doi-asserted-by":"crossref","unstructured":"Ullah, M.N., Park, Y., Kim, G.B., Kim, C., Park, C., Choi, H., and Yeom, J.-Y. (2021). Simultaneous Acquisition of Ultrasound and Gamma Signals with a Single-Channel Readout. Sensors, 21.","DOI":"10.3390\/s21041048"},{"key":"ref_8","unstructured":"Arnau, A. (2004). Piezoelectric Transducers and Applications, Springer."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Safari, A., and Akdogan, E.K. (2008). Piezoelectric and Acoustic Materials for Transducer Applications, Springer Science & Business Media.","DOI":"10.1007\/978-0-387-76540-2"},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"87","DOI":"10.1016\/j.pmatsci.2014.06.001","article-title":"Piezoelectric single crystal ultrasonic transducers for biomedical applications","volume":"66","author":"Zhou","year":"2014","journal-title":"Prog. Mater. Sci."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"You, K., and Choi, H. (2020). Wide Bandwidth Class-S Power Amplifiers for Ultrasonic Devices. Sensors, 20.","DOI":"10.3390\/s20010290"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Kim, J., You, K., Choe, S.-H., and Choi, H. (2020). Wireless Ultrasound Surgical System with Enhanced Power and Amplitude Performances. Sensors, 20.","DOI":"10.3390\/s20154165"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Albulet, M. (2001). RF Power Amplifiers, SciTech Publishing.","DOI":"10.1049\/SBEW030E"},{"key":"ref_14","unstructured":"Hella, M.M., and Ismail, M. (2006). RF CMOS Power Amplifiers: Theory, Design and Implementation, Springer Science & Business Media."},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Grebennikov, A., Sokal, N.O., and Franco, M.J. (2011). Switchmode RF Power Amplifiers, Newnes.","DOI":"10.1016\/B978-0-12-415907-5.00002-X"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"226","DOI":"10.1007\/s40846-015-0026-7","article-title":"Power Amplifier Linearizer for High Frequency Medical Ultrasound Applications","volume":"35","author":"Choi","year":"2015","journal-title":"J. Med. Biol. Eng."},{"key":"ref_17","unstructured":"Grebennikov, A. (2005). RF and Microwave Power Amplifier Design, McGraw-Hill."},{"key":"ref_18","unstructured":"Sechi, F., and Bujatti, M. (2009). Solid-State Microwave High-Power Amplifiers, Artech House."},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Kim, K., and Choi, H. (2021). A New Approach to Power Efficiency Improvement of Ultrasonic Transmitters via a Dynamic Bias Technique. Sensors, 21.","DOI":"10.3390\/s21082795"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"735","DOI":"10.1109\/TUFFC.2019.2956043","article-title":"Acoustic energy controlled nanoparticle aggregation for nanotherapy","volume":"67","author":"Peng","year":"2019","journal-title":"IEEE Trans. Ultrason. Ferroelectr. Freq. Control"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"9840678","DOI":"10.34133\/2022\/9840678","article-title":"Development of Moderate Intensity Focused Ultrasound (MIFU) for Ocular Drug Delivery","volume":"2022","author":"Li","year":"2022","journal-title":"BME Front."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"504","DOI":"10.3389\/fcell.2020.00504","article-title":"Focused ultrasound stimulates ER localized mechanosensitive PANNEXIN-1 to mediate intracellular calcium release in invasive cancer cells","volume":"8","author":"Lee","year":"2020","journal-title":"Front. Cell Dev. Biol."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"190","DOI":"10.1016\/j.brs.2021.12.005","article-title":"High resolution ultrasonic neural modulation observed via in vivo two-photon calcium imaging","volume":"15","author":"Cheng","year":"2022","journal-title":"Brain Stimul."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1109\/TBME.2018.2821201","article-title":"Noninvasive Ultrasonic Neuromodulation in Freely Moving Mice","volume":"66","author":"Li","year":"2018","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Choi, H., and Choe, S.-W. (2018). Therapeutic Effect Enhancement by Dual-bias High-voltage Circuit of Transmit Amplifier for Immersion Ultrasound Transducer Applications. Sensors, 18.","DOI":"10.3390\/s18124210"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"681","DOI":"10.1016\/j.neuron.2010.05.008","article-title":"Transcranial pulsed ultrasound stimulates intact brain circuits","volume":"66","author":"Tufail","year":"2010","journal-title":"Neuron"},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Kim, J., You, K., and Choi, H. (2020). Post-Voltage-Boost Circuit-Supported Single-Ended Class-B Amplifier for Piezoelectric Transducer Applications. Sensors, 20.","DOI":"10.3390\/s20185412"},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"153850","DOI":"10.1109\/ACCESS.2021.3127875","article-title":"Acoustic Power Transfer Using Self-Focused Transducers for Miniaturized Implantable Neurostimulators","volume":"9","author":"Kim","year":"2021","journal-title":"IEEE Access"},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"39","DOI":"10.1038\/s41378-020-0150-6","article-title":"Investigation of cell mechanics using single-beam acoustic tweezers as a versatile tool for the diagnosis and treatment of highly invasive breast cancer cell lines: An in vitro study","volume":"6","author":"Lim","year":"2020","journal-title":"Microsyst. Nanoeng."},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"106865","DOI":"10.1016\/j.measurement.2019.106865","article-title":"A novel therapeutic instrument using an ultrasound-light-emitting diode with an adjustable telephoto lens for suppression of tumor cell proliferation","volume":"147","author":"Choi","year":"2019","journal-title":"Measurement"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1074","DOI":"10.1109\/TBME.2019.2929008","article-title":"Non-Contact High-Frequency Ultrasound Microbeam Stimulation: A Novel Finding and Potential Causes of Cell Responses","volume":"67","author":"Qi","year":"2020","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Choi, H., and Choe, S.-W. (2019). Acoustic Stimulation by Shunt-Diode Pre-Linearizer Using Very High Frequency Piezoelectric Transducer for Cancer Therapeutics. Sensors, 19.","DOI":"10.3390\/s19020357"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1889","DOI":"10.1109\/TUFFC.2022.3170074","article-title":"Manipulation and Mechanical Deformation of Leukemia Cells by High-Frequency Ultrasound Single Beam","volume":"69","author":"Zeng","year":"2022","journal-title":"IEEE Trans. Ultrason. Ferroelectr. Freq. Control"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"48","DOI":"10.1007\/s10439-017-1949-7","article-title":"Low-Intensity Ultrasound Modulates Ca2+ Dynamics in Human Mesenchymal Stem Cells via Connexin 43 Hemichannel","volume":"46","author":"Yoon","year":"2018","journal-title":"Ann. Biomed. Eng."},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"You, K., Kim, S.-H., and Choi, H. (2020). A Class-J Power Amplifier Implementation for Ultrasound Device Applications. Sensors, 20.","DOI":"10.3390\/s20082273"},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Colantonio, P., Giannini, F., and Limiti, E. (2009). High Efficiency RF and Microwave Solid State Power Amplifiers, Wiley Online Library.","DOI":"10.1002\/9780470746547"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Choi, H. (2022). Class-C Pulsed Power Amplifier with Voltage Divider Integrated with High-Voltage Transistor and Switching Diodes for Handheld Ultrasound Instruments. Energies, 15.","DOI":"10.3390\/en15217836"},{"key":"ref_38","unstructured":"Lee, T.H. (2006). The Design of CMOS Radio-Frequency Integrated Circuits, Cambridge University Press."},{"key":"ref_39","unstructured":"Razavi, B. (2011). RF Microelectronics, Prentice Hall."},{"key":"ref_40","doi-asserted-by":"crossref","unstructured":"Choi, H., Yoon, C., and Yeom, J.-Y. (2017). A Wideband High-Voltage Power Amplifier Post-Linearizer for Medical Ultrasound Transducers. Appl. Sci., 7.","DOI":"10.3390\/app7040354"},{"key":"ref_41","unstructured":"Razavi, B. (2012). Design of Integrated Circuits for Optical Communications, John Wiley & Sons."},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Reynaert, P., and Steyaert, M. (2006). RF Power Amplifiers for Mobile Communications, Springer Science & Business Media.","DOI":"10.1007\/1-4020-5117-4"},{"key":"ref_43","unstructured":"Szabo, T.L. (2013). Diagnostic Ultrasound Imaging: Inside Out, Elsevier Academic Press."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Walker, J.L. (2011). Handbook of RF and Microwave Power Amplifiers, Cambridge University Press.","DOI":"10.1017\/CBO9781139015349"},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Choi, H. (2019). Development of a Class-C Power Amplifier with Diode Expander Architecture for Point-of-Care Ultrasound Systems. Micromachines, 10.","DOI":"10.3390\/mi10100697"},{"key":"ref_46","unstructured":"Cripps, S.C. (2006). RF Power Amplifiers for Wireless Communications, Artech House."},{"key":"ref_47","doi-asserted-by":"crossref","unstructured":"Kim, K., and Choi, H. (2021). Novel Bandwidth Expander Supported Power Amplifier for Wideband Ultrasound Transducer Devices. Sensors, 21.","DOI":"10.3390\/s21072356"},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"34","DOI":"10.1007\/s10916-014-0034-0","article-title":"Protection circuits for very high frequency ultrasound systems","volume":"38","author":"Choi","year":"2014","journal-title":"J. Med. Syst."},{"key":"ref_49","doi-asserted-by":"crossref","unstructured":"Kim, J., Kim, K., Choe, S.-H., and Choi, H. (2020). Development of an Accurate Resonant Frequency Controlled Wire Ultrasound Surgical Instrument. Sensors, 20.","DOI":"10.3390\/s20113059"},{"key":"ref_50","doi-asserted-by":"crossref","first-page":"111616","DOI":"10.1016\/j.sna.2019.111616","article-title":"Development of negative-group-delay circuit for high-frequency ultrasonic transducer applications","volume":"299","author":"Choi","year":"2019","journal-title":"Sens. Actuators A"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1558","DOI":"10.1109\/TUFFC.2012.2355","article-title":"A multifunctional, reconfigurable pulse generator for high-frequency ultrasound imaging","volume":"59","author":"Weibao","year":"2012","journal-title":"IEEE Trans. Ultrason. Ferroelectr. Freq. Control"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"1942","DOI":"10.1109\/TCSI.2014.2298284","article-title":"Analysis and Design of a High Voltage Integrated Class-B Amplifier for Ultra-Sound Transducers","volume":"61","author":"Bianchi","year":"2014","journal-title":"IEEE Trans. Circuits Syst. I Regul. Pap."},{"key":"ref_53","first-page":"373","article-title":"An integrated high-voltage low-distortion current-feedback linear power amplifier for ultrasound transmitters using digital predistortion and dynamic current biasing techniques","volume":"61","author":"Gao","year":"2014","journal-title":"IEEE Trans. Circuits Syst. II Express Briefs"},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1016\/j.apacoust.2019.01.012","article-title":"Design of full bridge high voltage pulser for sandwiched piezoelectric ultrasonic transducers used in long rail detection","volume":"149","author":"Wei","year":"2019","journal-title":"Appl. Acoust."},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"104701","DOI":"10.1063\/1.4897155","article-title":"A 15 MHz bandwidth, 60 Vpp, low distortion power amplifier for driving high power piezoelectric transducers","volume":"85","author":"Capineri","year":"2014","journal-title":"Rev. Sci. Instrum."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"1036","DOI":"10.1109\/58.852087","article-title":"Class D Amplifier for a Power Piezoelectric Load","volume":"47","author":"Agbossou","year":"2000","journal-title":"IEEE Trans. Ultrason. Ferroelectr. Freq. Control"},{"key":"ref_57","doi-asserted-by":"crossref","unstructured":"Nielsen, D., Knott, A., and Andersen, M.A.E. (2014, January 16\u201320). A High-Voltage Class D Audio Amplifier for Dielectric Elastomer Transducers. Proceedings of the IEEE Applied Power Electronics Conference and Exposition\u2014APEC 2014, Fort Worth, TX, USA.","DOI":"10.1109\/APEC.2014.6803776"},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"375","DOI":"10.1109\/TBCAS.2015.2406119","article-title":"Class-DE ultrasound transducer driver for HIFU therapy","volume":"10","author":"Christoffersen","year":"2016","journal-title":"IEEE Trans. Biomed. Circuits Syst."},{"key":"ref_59","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1016\/j.sna.2017.05.021","article-title":"Driving an inductive piezoelectric transducer with class E inverter","volume":"261","author":"Yuan","year":"2017","journal-title":"Sens. Actuators A"},{"key":"ref_60","doi-asserted-by":"crossref","first-page":"105003","DOI":"10.1063\/1.4963920","article-title":"Driving frequency optimization of a piezoelectric transducer and the power supply development","volume":"87","author":"Dong","year":"2016","journal-title":"Rev. Sci. Instrum."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Choi, H., Park, C., Kim, J., and Jung, H. (2017). Bias-Voltage Stabilizer for HVHF Amplifiers in VHF Pulse-Echo Measurement Systems. Sensors, 17.","DOI":"10.3390\/s17102425"},{"key":"ref_62","doi-asserted-by":"crossref","unstructured":"Choi, H. (2019). Stacked Transistor Bias Circuit of Class-B Amplifier for Portable Ultrasound Systems. Sensors, 19.","DOI":"10.3390\/s19235252"},{"key":"ref_63","unstructured":"Cripps, S.C. (2002). Advanced Techniques in RF Power Amplifier Design, Artech House."},{"key":"ref_64","unstructured":"Vuolevi, J., and Rahkonen, T. (2003). Distortion in RF Power Amplifiers, Artech house."},{"key":"ref_65","doi-asserted-by":"crossref","unstructured":"Choi, H. (2019). Class-C Linearized Amplifier for Portable Ultrasound Instruments. Sensors, 19.","DOI":"10.3390\/s19040898"},{"key":"ref_66","doi-asserted-by":"crossref","first-page":"055003","DOI":"10.1088\/1361-6560\/ab6579","article-title":"Wavelength discrimination (WLD) TOF-PET detector with DOI information","volume":"65","author":"Ullah","year":"2019","journal-title":"Phys. Med. Biol."},{"key":"ref_67","doi-asserted-by":"crossref","first-page":"76","DOI":"10.1186\/1475-925X-13-76","article-title":"Crossed SMPS MOSFET-based protection circuit for high frequency ultrasound transceivers and transducers","volume":"13","author":"Choi","year":"2014","journal-title":"Biomed. Eng. Online"},{"key":"ref_68","doi-asserted-by":"crossref","first-page":"20","DOI":"10.1109\/51.544509","article-title":"Ultrasonic transducers and arrays","volume":"15","author":"Shung","year":"1996","journal-title":"IEEE Eng. Med. Biol. Mag."},{"key":"ref_69","doi-asserted-by":"crossref","first-page":"754","DOI":"10.1016\/j.ultras.2013.10.010","article-title":"Bipolar-power-transistor-based limiter for high frequency ultrasound imaging systems","volume":"54","author":"Choi","year":"2014","journal-title":"Ultrasonics"},{"key":"ref_70","unstructured":"Wai-kai, C. (2016). Active Network Analysis: Feedback Amplifier Theory, World Scientific."},{"key":"ref_71","doi-asserted-by":"crossref","unstructured":"Choi, H. (2019). Prelinearized Class-B Power Amplifier for Piezoelectric Transducers and Portable Ultrasound Systems. Sensors, 19.","DOI":"10.3390\/s19020287"},{"key":"ref_72","unstructured":"Razavi, B. (2016). Design of Analog CMOS Integrated Circuits, McGraw-Hill Science."},{"key":"ref_73","doi-asserted-by":"crossref","unstructured":"Kim, K., and Choi, H. (2021). High-efficiency high-voltage class F amplifier for high-frequency wireless ultrasound systems. PLoS ONE, 16.","DOI":"10.1371\/journal.pone.0249034"},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"2646","DOI":"10.1109\/TUFFC.2011.2127","article-title":"Development of Integrated Preamplifier for High-Frequency Ultrasonic Transducers and Low-Power Handheld Receiver","volume":"58","author":"Choi","year":"2011","journal-title":"IEEE Trans. Ultrason. Ferroelectr. Freq. Control"},{"key":"ref_75","doi-asserted-by":"crossref","first-page":"317","DOI":"10.1177\/0161734614524180","article-title":"Power MOSFET-diode-based limiter for high frequency ultrasound systems","volume":"36","author":"Choi","year":"2014","journal-title":"Ultrason. Imaging"},{"key":"ref_76","doi-asserted-by":"crossref","unstructured":"Eroglu, A. (2017). Linear and Switch-Mode RF Power Amplifiers: Design and Implementation Methods, CRC Press.","DOI":"10.1201\/9781315151960"},{"key":"ref_77","doi-asserted-by":"crossref","unstructured":"Choi, H., Yeom, J.-Y., and Ryu, J.-M. (2018). Development of a Multiwavelength Visible-Range-Supported Opto\u2013Ultrasound Instrument Using a Light-Emitting Diode and Ultrasound Transducer. Sensors, 18.","DOI":"10.3390\/s18103324"},{"key":"ref_78","doi-asserted-by":"crossref","unstructured":"Kripfgans, O.D., and Chan, H.-L. (2021). Ultrasonic Imaging: Physics and Mechanism, Springer International Publishing.","DOI":"10.1007\/978-3-030-51288-0_1"},{"key":"ref_79","doi-asserted-by":"crossref","unstructured":"Choi, H. (2022). Pre-Matching Circuit for High-Frequency Ultrasound Transducers. Sensors, 22.","DOI":"10.3390\/s22228861"},{"key":"ref_80","unstructured":"Wambacq, P., and Sansen, W.M. (2013). Distortion Analysis of Analog Integrated Circuits, Springer Science & Business Media."},{"key":"ref_81","doi-asserted-by":"crossref","unstructured":"Eroglu, A. (2018). Introduction to RF Power Amplifier Design and Simulation, CRC Press.","DOI":"10.1201\/9781315215297"},{"key":"ref_82","unstructured":"Kumar, N., and Grebennikov, A. (2015). Distributed Power Amplifiers for RF and Microwave Communications, Artech House."},{"key":"ref_83","doi-asserted-by":"crossref","first-page":"138","DOI":"10.1016\/j.measurement.2016.10.053","article-title":"An impedance measurement system for piezoelectric array element transducers","volume":"97","author":"Jeong","year":"2017","journal-title":"Measurement"},{"key":"ref_84","doi-asserted-by":"crossref","first-page":"1962","DOI":"10.1109\/TUFFC.2011.2038","article-title":"Structure and electrical properties of (111)-oriented Pb (Mg 1\/3 Nb 2\/3) O 3-PbZrO 3-PbTiO 3 thin film for ultra-high-frequency transducer applications","volume":"58","author":"Zhu","year":"2011","journal-title":"IEEE Trans. Ultrason. Ferroelectr. Freq. Control"},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"1033","DOI":"10.1016\/j.ultras.2013.01.012","article-title":"Development of lead-free single-element ultrahigh frequency (170\u2013320 MHz) ultrasonic transducers","volume":"53","author":"Lam","year":"2013","journal-title":"Ultrasonics"},{"key":"ref_86","doi-asserted-by":"crossref","unstructured":"Choe, S.-W., and Choi, H. (2018). Suppression Technique of HeLa Cell Proliferation Using Ultrasonic Power Amplifiers Integrated with a Series-Diode Linearizer. Sensors, 18.","DOI":"10.3390\/s18124248"},{"key":"ref_87","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1016\/j.ultras.2013.04.018","article-title":"Novel power MOSFET-based expander for high frequency ultrasound systems","volume":"54","author":"Choi","year":"2014","journal-title":"Ultrasonics"},{"key":"ref_88","doi-asserted-by":"crossref","first-page":"513","DOI":"10.3233\/THC-228047","article-title":"Novel dual-resistor-diode limiter circuit structures for high-voltage reliable ultrasound receiver systems","volume":"30","author":"Choi","year":"2022","journal-title":"Technol. Health Care"},{"key":"ref_89","doi-asserted-by":"crossref","unstructured":"You, K., and Choi, H. (2020). Inter-Stage Output Voltage Amplitude Improvement Circuit Integrated with Class-B Transmit Voltage Amplifier for Mobile Ultrasound Machines. Sensors, 20.","DOI":"10.3390\/s20216244"},{"key":"ref_90","unstructured":"Baliga, B.J. (2010). Fundamentals of Power Semiconductor Devices, Springer Science & Business Media."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"77","DOI":"10.3233\/THC-218008","article-title":"Development of a low-cost six-axis alignment instrument for flexible 2D and 3D ultrasonic probes","volume":"29","author":"Kim","year":"2021","journal-title":"Technol. Health Care"},{"key":"ref_92","unstructured":"Mattiat, O.E. (2013). Ultrasonic Transducer Materials, Springer Science & Business Media."},{"key":"ref_93","doi-asserted-by":"crossref","unstructured":"Shutilov, V.A., and Alferieff, M.E. (2020). Fundamental Physics of Ultrasound, CRC Press.","DOI":"10.1201\/9780429332227"},{"key":"ref_94","doi-asserted-by":"crossref","unstructured":"Choi, H., Woo, P.C., Yeom, J.-Y., and Yoon, C. (2017). Power MOSFET Linearizer of a High-Voltage Power Amplifier for High-Frequency Pulse-Echo Instrumentation. Sensors, 17.","DOI":"10.3390\/s17040764"},{"key":"ref_95","doi-asserted-by":"crossref","unstructured":"Choi, H. (2023). A Doherty Power Amplifier for Ultrasound Instrumentation. Sensors, 23.","DOI":"10.3390\/s23052406"}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/7\/3466\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2023,12,9]],"date-time":"2023-12-09T17:45:17Z","timestamp":1702143917000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/7\/3466"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,3,26]]},"references-count":95,"journal-issue":{"issue":"7","published-online":{"date-parts":[[2023,4]]}},"alternative-id":["s23073466"],"URL":"https:\/\/doi.org\/10.3390\/s23073466","relation":{},"ISSN":["1424-8220"],"issn-type":[{"value":"1424-8220","type":"electronic"}],"subject":[],"published":{"date-parts":[[2023,3,26]]}}}