{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,1,16]],"date-time":"2025-01-16T05:24:00Z","timestamp":1737005040014,"version":"3.33.0"},"reference-count":46,"publisher":"MDPI AG","issue":"4","license":[{"start":{"date-parts":[[2023,2,10]],"date-time":"2023-02-10T00:00:00Z","timestamp":1675987200000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100017592","name":"Key Science and Technology Program of Shaanxi Province","doi-asserted-by":"crossref","award":["2021KWZ-11","2021QFY03-02","2022QFY04-03"],"id":[{"id":"10.13039\/501100017592","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100004543","name":"China Scholarship Council","doi-asserted-by":"crossref","award":["202208615033"],"id":[{"id":"10.13039\/501100004543","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Science and Technology project of Xi\u2019an City","award":["22GXFW0009"]},{"DOI":"10.13039\/501100017596","name":"Natural Science Basic Research Program of Shaanxi Province","doi-asserted-by":"crossref","award":["2020JQ-735"],"id":[{"id":"10.13039\/501100017596","id-type":"DOI","asserted-by":"crossref"}]},{"DOI":"10.13039\/501100013101","name":"Scientific Research Plan Project of Shaanxi Education Department","doi-asserted-by":"crossref","award":["19JK0146"],"id":[{"id":"10.13039\/501100013101","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Special Foundation of Shaanxi Provincial Department of Education","award":["20JK0543"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Diabetes Mellitus (DM) and Coronary Heart Disease (CHD) are among top causes of patient health issues and fatalities in many countries. At present, terahertz biosensors have been widely used to detect chronic diseases because of their accurate detection, fast operation, flexible design and easy fabrication. In this paper, a Zeonex-based microstructured fiber (MSF) biosensor is proposed for detecting DM and CHD markers by adopting a terahertz time-domain spectroscopy system. A suspended hollow-core structure with a square core and a hexagonal cladding is used, which enhances the interaction of terahertz waves with targeted markers and reduces the loss. This work focuses on simulating the transmission performance of the proposed MSF sensor by using a finite element method and incorporating a perfectly matched layer as the absorption boundary. The simulation results show that this MSF biosensor exhibits an ultra-high relative sensitivity, especially up to 100.35% at 2.2THz, when detecting DM and CHD markers. Furthermore, for different concentrations of disease markers, the MSF exhibits significant differences in effective material loss, which can effectively improve clinical diagnostic accuracy and clearly distinguish the extent of the disease. This MSF biosensor is simple to fabricate by 3D printing and extrusion technologies, and is expected to provide a convenient and capable tool for rapid biomedical diagnosis.<\/jats:p>","DOI":"10.3390\/s23042020","type":"journal-article","created":{"date-parts":[[2023,2,13]],"date-time":"2023-02-13T07:14:11Z","timestamp":1676272451000},"page":"2020","source":"Crossref","is-referenced-by-count":6,"title":["Ultra-High Sensitivity Terahertz Microstructured Fiber Biosensor for Diabetes Mellitus and Coronary Heart Disease Marker Detection"],"prefix":"10.3390","volume":"23","author":[{"given":"Jia","family":"Xue","sequence":"first","affiliation":[{"name":"Department of Physics, School of Arts & Sciences, Shaanxi University of Science & Technology, Xi\u2019an 710021, China"}]},{"given":"Yani","family":"Zhang","sequence":"additional","affiliation":[{"name":"Department of Physics, School of Arts & Sciences, Shaanxi University of Science & Technology, Xi\u2019an 710021, China"}]},{"given":"Zhe","family":"Guang","sequence":"additional","affiliation":[{"name":"School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, GA 30332, USA"}]},{"given":"Ting","family":"Miao","sequence":"additional","affiliation":[{"name":"Department of Physics, School of Arts & Sciences, Shaanxi University of Science & Technology, Xi\u2019an 710021, China"}]},{"given":"Zohaib","family":"Ali","sequence":"additional","affiliation":[{"name":"School of Physics, Georgia Institute of Technology, 837 State Street NW, Atlanta, GA 30332, USA"},{"name":"Nano-Optoelectronics Research Laboratory, Department of Physics, University of Agriculture Faisalabad, Faisalabad 38040, Pakistan"}]},{"given":"Dun","family":"Qiao","sequence":"additional","affiliation":[{"name":"Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK"}]},{"given":"Yiming","family":"Yao","sequence":"additional","affiliation":[{"name":"Department of Physics, School of Arts & Sciences, Shaanxi University of Science & Technology, Xi\u2019an 710021, China"}]},{"given":"Kexin","family":"Wu","sequence":"additional","affiliation":[{"name":"Department of Physics, School of Arts & Sciences, Shaanxi University of Science & Technology, Xi\u2019an 710021, China"}]},{"given":"Lei","family":"Zhou","sequence":"additional","affiliation":[{"name":"School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi\u2019an 710021, China"}]},{"given":"Cheng","family":"Meng","sequence":"additional","affiliation":[{"name":"School of Electrical and Control Engineering, Shaanxi University of Science & Technology, Xi\u2019an 710021, China"}]},{"given":"Nigel","family":"Copner","sequence":"additional","affiliation":[{"name":"Faculty of Computing, Engineering and Science, University of South Wales, Pontypridd CF37 1DL, UK"}]}],"member":"1968","published-online":{"date-parts":[[2023,2,10]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Wang, M., Tan, Y., Shi, Y., Wang, X., Liao, Z., and Wei, P. (2020). Diabetes and Sarcopenic Obesity: Pathogenesis, Diagnosis, and Treatments. Front Endocrinol, 11.","DOI":"10.3389\/fendo.2020.00568"},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Lykina, A.A., Nazarov, M.M., Konnikova, M.R., Mustafin, I.A., Vaks, V.L., and Anfertev, V.A. (2021). Terahertz spectroscopy of diabetic and non-diabetic human blood plasma pellets. J. Biomed. Opt., 26.","DOI":"10.1117\/1.JBO.26.4.043006"},{"key":"ref_3","doi-asserted-by":"crossref","unstructured":"Khan, R.M.M., Chua, Z.J.Y., Tan, J.C., Yang, Y., Liao, Z., and Zhao, Y. (2019). From Pre-Diabetes to Diabetes: Diagnosis, Treatments and Translational Research. Medicina, 55.","DOI":"10.3390\/medicina55090546"},{"key":"ref_4","doi-asserted-by":"crossref","unstructured":"Wang, D., Zhang, Y., Han, J., Li, X., Chen, X., Qiu, T., and Chen, H. (2021). Quantification of triglyceride levels in fresh human blood by terahertz time-domain spectroscopy. Sci. Rep., 11.","DOI":"10.1038\/s41598-021-92656-4"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"2982","DOI":"10.1016\/j.jacc.2020.11.010","article-title":"Global Burden of Cardiovascular Diseases and Risk Factors, 1990-2019: Update From the GBD 2019 Study","volume":"76","author":"Roth","year":"2020","journal-title":"J. Am. Coll. Cardiol."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"3555","DOI":"10.2174\/0929867322666150904105941","article-title":"Atherosclerotic and Non-Atherosclerotic Coronary Heart Disease in Women","volume":"22","author":"Kolovou","year":"2015","journal-title":"Curr. Med. Chem."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"1909","DOI":"10.1056\/NEJM200112273452609","article-title":"Noninvasive coronary angiography-an acceptable alternative","volume":"345","author":"Achenbach","year":"2001","journal-title":"N. Engl. J. Med."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"3682","DOI":"10.1093\/eurheartj\/ehy645","article-title":"Emerging Applications of Coronary CT Angiography in Coronary Heart Disease: Getting Better with Time","volume":"39","author":"Elnabawi","year":"2018","journal-title":"Eur. Heart J."},{"key":"ref_9","doi-asserted-by":"crossref","unstructured":"Habib, A., Anower, S., Abdulrazak, L.F., and Reza, S. (2019). Hollow core photonic crystal fiber for chemical identification in terahertz regime. Opt. Fiber Technol., 52.","DOI":"10.1016\/j.yofte.2019.101933"},{"key":"ref_10","doi-asserted-by":"crossref","unstructured":"Wang, J., Lindley-Hatcher, H., Chen, X., and Pickwell-MacPherson, E. (2021). THz Sensing of Human Skin: A Review of Skin Modeling Approaches. Sensors, 21.","DOI":"10.3390\/s21113624"},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Qiu, S., Yuan, J., Duan, S., Zhou, X., Mei, C., and Qu, Y. (2021). High sensitivity temperature sensor based on a helically twisted photonic crystal fiber. Results Phys., 29.","DOI":"10.1016\/j.rinp.2021.104767"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"An, W., Li, C., Wang, D., Chen, W., Guo, S., Gao, S., and Zhang, C. (2022). Flat Photonic Crystal Fiber Plasmonic Sensor for Simultaneous Measurement of Temperature and Refractive Index with High Sensitivity. Sensors, 22.","DOI":"10.3390\/s22239028"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Yu, R., Chen, Y., Shui, L., and Xiao, L. (2020). Hollow-Core Photonic Crystal Fiber Gas Sensing. Sensors, 20.","DOI":"10.3390\/s20102996"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"BBulbul, A.M., Rahaman, H., Biswas, S., Hossain, R., and Nahid, A. (2020). Design and numerical analysis of a PCF-based bio-sensor for breast cancer cell detection in the THz regime. Sens. Bio-Sens. Res., 30.","DOI":"10.1016\/j.sbsr.2020.100388"},{"key":"ref_15","doi-asserted-by":"crossref","unstructured":"Gandhi, M.S.A., Zhao, Y., Fu, H.Y., and Li, Q. (2022). A Highly Versatile Porous Core Photonic Quasicrystal Fiber Based Refractive Index Terahertz Sensor. Sensors, 22.","DOI":"10.3390\/s22093469"},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"575","DOI":"10.1109\/JSEN.2017.2775642","article-title":"A novel approach for spectroscopic chemical identification using photonic crystal fiber in the terahertz regime","volume":"18","author":"Islam","year":"2017","journal-title":"IEEE Sens. J."},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Yang, T., Zhang, L., Shi, Y., Liu, S., and Dong, Y. (2021). A Highly Birefringent Photonic Crystal Fiber for Terahertz Spectroscopic Chemical Sensing. Sensors, 21.","DOI":"10.3390\/s21051799"},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"1017","DOI":"10.1007\/s13538-021-00906-7","article-title":"Hollow Core Photonic Crystal Fiber (PCF)\u2013Based Optical Sensor for Blood Component Detection in Terahertz Spectrum","volume":"51","author":"Mahmoud","year":"2021","journal-title":"Braz. J. Phys."},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Kumar, A., Verma, P., and Jindal, P. (2021). Decagonal solid core PCF based refractive index sensor for blood cells detection in terahertz regime. Opt. Quantum Electron., 53.","DOI":"10.1007\/s11082-021-02818-x"},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"1513","DOI":"10.1364\/PRJ.420672","article-title":"Hollow-core antiresonant terahertz fiber-based TOPAS extruded from a 3D printer using a metal 3D printed nozzle","volume":"9","author":"Talataisong","year":"2021","journal-title":"Photonics Res."},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Im, J., Goo, T., Kim, J., Choi, S., Hong, S.J., and Bahk, Y.M. (2021). Detection of Microplastic in Salts Using Terahertz Time-Domain Spectroscopy. Sensors, 21.","DOI":"10.3390\/s21093161"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Chen, A., Harris, Z.B., Virk, A., Abazari, A., Varadaraj, K., Honkanen, R., and Arbab, M.H. (2022). Assessing Corneal Endothelial Damage Using Terahertz Time-Domain Spectroscopy and Support Vector Machines. Sensors, 22.","DOI":"10.21203\/rs.3.rs-2281792\/v1"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"20206","DOI":"10.1364\/OE.16.020206","article-title":"Surface Plasmon Resonance-like integrated sensor at terahertz frequencies for gaseous analytes","volume":"16","author":"Hassani","year":"2008","journal-title":"Opt. Express"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"5695","DOI":"10.1364\/AO.52.005695","article-title":"Terahertz surface plasmon sensor for distinguishing gasolines","volume":"52","author":"Liu","year":"2013","journal-title":"Appl. Opt."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Ma, Y., Li, J., Han, Z., Maeda, H., and Ma, Y. (2020). Bragg-Mirror-Assisted High-Contrast Plasmonic Interferometers: Concept and Potential in Terahertz Sensing. Nanomaterials, 10.","DOI":"10.3390\/nano10071385"},{"key":"ref_26","doi-asserted-by":"crossref","unstructured":"Ma, Y., Nguyen-Huu, N., Zhou, J., Maeda, H., Wu, Q., Eldlio, M., Pistora, J., and Cada, M. (2017). Mach\u2013Zehnder Interferometer-Based Integrated Terahertz Temperature Sensor. IEEE J. Sel. Top. Quantum Electron., 23.","DOI":"10.1109\/JSTQE.2017.2660882"},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"336","DOI":"10.1016\/j.optmat.2018.03.054","article-title":"A modified hexagonal photonic crystal fiber for terahertz applications","volume":"79","author":"Islam","year":"2018","journal-title":"Opt. Mater."},{"key":"ref_28","doi-asserted-by":"crossref","unstructured":"Leon, J.B.M., Abedin, S., and Kabir, A. (2021). A photonic crystal fiber for liquid sensing application with high sensitivity, birefringence and low confinement loss. Sens. Int., 2.","DOI":"10.1016\/j.sintl.2020.100061"},{"key":"ref_29","doi-asserted-by":"crossref","unstructured":"Podder, E., Hossain, B., Rahaman, E., Bulbul, A.A., and Ahmed, K. (2020). Design and optimization of terahertz blood components sensor using photonic crystal fiber. Sens. Bio-Sens. Res., 30.","DOI":"10.1016\/j.sbsr.2020.100386"},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Wang, Y., Jiang, G., Yu, Z., Wang, Q., and Jiang, X. (2021). Spider web-shaped photonic crystal fiber for THz wave propagation. Results Opt., 5.","DOI":"10.1016\/j.rio.2021.100137"},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Islam, M.R., Iftekher, A.N.M., Mou, F.A., Rahman, M., and Bhuiyan, M.I.H. (2021). Design of a Topas-based ultrahigh-sensitive PCF biosensor for blood component detection. Appl. Phys. A, 127.","DOI":"10.1007\/s00339-020-04261-3"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"286","DOI":"10.1364\/OME.7.000286","article-title":"Zeonex microstructured polymer optical fiber: Fabrication friendly fibers for high temperature and humidity insensitive Bragg grating sensing","volume":"7","author":"Woyessa","year":"2017","journal-title":"Opt. Mater. Express"},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"1013","DOI":"10.1364\/JOSAB.28.001013","article-title":"Characterization of a microstructured Zeonex terahertz fiber","volume":"28","author":"Anthony","year":"2011","journal-title":"JOSA B"},{"key":"ref_34","doi-asserted-by":"crossref","first-page":"13059","DOI":"10.1364\/OE.450550","article-title":"Extruded TOPAS hollow-core anti-resonant fiber optimized for THz guidance at 0.9THz","volume":"30","author":"Phanchat","year":"2022","journal-title":"Opt. Express"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Talataisong, W., Gorecki, J., Ismaeel, R., Beresna, M., Schwendemann, D., Apostolopoulos, V., and Brambilla, G. (2020). Singlemoded THz guidance in bendable TOPAS suspended-core fiber directly drawn from a 3D printer. Sci. Rep., 10.","DOI":"10.1038\/s41598-020-68079-y"},{"key":"ref_36","first-page":"1577","article-title":"Hollow-Core Photonic Crystal Fiber Based on C2H2 and NH3 Gas Sensor","volume":"411","author":"Wu","year":"2013","journal-title":"Appl. Mech. Mater."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"8","DOI":"10.1016\/j.sbsr.2016.11.003","article-title":"A new structure of photonic crystal fiber with high sensitivity, high nonlinearity, high birefringence and low confinement loss for liquid analyte sensing applications","volume":"12","author":"Arif","year":"2017","journal-title":"Sens. Bio-Sens. Res."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"13056","DOI":"10.1364\/OE.14.013056","article-title":"Microstructured-core optical fibre for evanescent sensing applications","volume":"14","author":"Cordeiro","year":"2006","journal-title":"Opt. Express"},{"key":"ref_39","doi-asserted-by":"crossref","unstructured":"Rahaman, E., Jibon, R.H., Mondal, H.S., Hossain, B., and Bulbul, A.A. (2021). Design and optimization of a PCF-based chemical sensor in THz regime. Sens. Bio-Sens. Res., 32.","DOI":"10.1016\/j.sbsr.2021.100422"},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"1297","DOI":"10.1007\/s11468-021-01409-6","article-title":"Extremely Sensitive Photonic Crystal Fiber\u2013Based Cancer Cell Detector in the Terahertz Regime","volume":"16","author":"Habib","year":"2021","journal-title":"Plasmonics"},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"42","DOI":"10.1016\/S0009-2614(00)00227-X","article-title":"Pulsed terahertz spectroscopy of DNA, bovine serum albumin and collagen between 0.1 and 2.0 THz","volume":"320","author":"Markelz","year":"2000","journal-title":"Chem. Phys. Lett."},{"key":"ref_42","doi-asserted-by":"crossref","first-page":"399","DOI":"10.1007\/s10762-017-0462-2","article-title":"Quantify Glucose Level in Freshly Diabetic\u2019s Blood by Terahertz Time-Domain Spectroscopy","volume":"39","author":"Chen","year":"2018","journal-title":"J. Infrared Millim. Terahertz Waves"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"411","DOI":"10.1049\/iet-opt.2020.0069","article-title":"Modelling and simulation of novel liquid-infiltrated PCF biosensor in Terahertz frequencies","volume":"14","author":"BSuhaimi","year":"2020","journal-title":"IET Optoelectron."},{"key":"ref_44","doi-asserted-by":"crossref","unstructured":"Islam, M.R., Kabir, F., Talha, K.A., and Islam, S. (2019). A novel hollow core terahertz refractometric sensor. Sens. Bio-Sens. Res., 25.","DOI":"10.1016\/j.sbsr.2019.100295"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"5419","DOI":"10.1016\/j.aej.2021.04.041","article-title":"Design and numerical analysis of an extremely sensitive PCF-based sensor for detecting kerosene adulteration in petrol and diesel","volume":"60","author":"Bulbul","year":"2021","journal-title":"Alex. Eng. J."},{"key":"ref_46","doi-asserted-by":"crossref","first-page":"160","DOI":"10.1049\/ote2.12067","article-title":"Design of a hexagonal outlined porous cladding with vacant core photonic crystal fibre biosensor for cyanide detection at THz regime","volume":"16","author":"Islam","year":"2022","journal-title":"IET Optoelectron."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/4\/2020\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,15]],"date-time":"2025-01-15T10:09:35Z","timestamp":1736935775000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/4\/2020"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,2,10]]},"references-count":46,"journal-issue":{"issue":"4","published-online":{"date-parts":[[2023,2]]}},"alternative-id":["s23042020"],"URL":"https:\/\/doi.org\/10.3390\/s23042020","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2023,2,10]]}}}