{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2025,4,21]],"date-time":"2025-04-21T19:46:30Z","timestamp":1745264790289,"version":"3.37.3"},"reference-count":43,"publisher":"MDPI AG","issue":"2","license":[{"start":{"date-parts":[[2023,1,8]],"date-time":"2023-01-08T00:00:00Z","timestamp":1673136000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"DOI":"10.13039\/501100012166","name":"National Key R\/D Program of China","doi-asserted-by":"crossref","award":["2018YFE0207600"],"id":[{"id":"10.13039\/501100012166","id-type":"DOI","asserted-by":"crossref"}]},{"name":"Natural Science Foundation of China (NSFC)","award":["61972308"]},{"name":"Natural Science Basic Research Program of Shaanxi","award":["2019JC-17"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Vehicle detection and tracking technology plays an important role in intelligent transportation management and control systems. This paper proposes a novel vehicle detection and tracking method for small target vehicles to achieve high detection and tracking accuracy based on the attention mechanism. We first develop a new vehicle detection model (YOLOv5-NAM) by adding the normalization-based attention module (NAM) to the classical YOLOv5s model. By exploiting the YOLOv5-NAM model as the vehicle detector, we then propose a real-time small target vehicle tracking method (JDE-YN), where the feature extraction process is embedded in the prediction head for joint training. Finally, we present extensive experimental results to verify our method on the UA-DETRAC dataset and to demonstrate that the method can effectively detect small target vehicles in real time. It is shown that compared with the original YOLOv5s model, the mAP value of the YOLOv5-NAM vehicle detection model is improved by 1.6%, while the MOTA value of the JDE-YN method improved by 0.9% compared with the original JDE method.<\/jats:p>","DOI":"10.3390\/s23020724","type":"journal-article","created":{"date-parts":[[2023,1,9]],"date-time":"2023-01-09T12:05:09Z","timestamp":1673265909000},"page":"724","source":"Crossref","is-referenced-by-count":40,"title":["A High-Precision Vehicle Detection and Tracking Method Based on the Attention Mechanism"],"prefix":"10.3390","volume":"23","author":[{"ORCID":"https:\/\/orcid.org\/0000-0002-4156-0157","authenticated-orcid":false,"given":"Jiandong","family":"Wang","sequence":"first","affiliation":[{"name":"School of Computer Science and Technology, Xidian University, Xi\u2019an 710071, China"}]},{"given":"Yahui","family":"Dong","sequence":"additional","affiliation":[{"name":"School of Computer Science and Technology, Xidian University, Xi\u2019an 710071, China"}]},{"ORCID":"https:\/\/orcid.org\/0000-0001-7677-4027","authenticated-orcid":false,"given":"Shuangrui","family":"Zhao","sequence":"additional","affiliation":[{"name":"School of Computer Science and Technology, Xidian University, Xi\u2019an 710071, China"}]},{"given":"Zhiwei","family":"Zhang","sequence":"additional","affiliation":[{"name":"School of Computer Science and Technology, Xidian University, Xi\u2019an 710071, China"}]}],"member":"1968","published-online":{"date-parts":[[2023,1,8]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Zheng, K., Jia, X., Chi, K., and Liu, X. (2022). DDPG-based joint time and energy management in ambient backscatter-assisted hybrid underlay CRNs. IEEE Trans. Commun.","DOI":"10.1109\/TCOMM.2022.3221422"},{"key":"ref_2","doi-asserted-by":"crossref","unstructured":"Liu, X., Xu, B., Wang, X., Zheng, K., Chi, K., and Tian, X. (2022). Impacts of sensing energy and data availability on throughput of energy harvesting cognitive radio networks. IEEE Trans. Veh. Technol.","DOI":"10.1109\/TVT.2022.3204310"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"2523","DOI":"10.1109\/TITS.2021.3119968","article-title":"Federated Intrusion Detection in Blockchain-Based Smart Transportation Systems","volume":"23","author":"Moustafa","year":"2022","journal-title":"IEEE Trans. Intell. Transp. Syst."},{"key":"ref_4","first-page":"1","article-title":"LOVD: Land Vehicle Detection in Complex Scenes of Optical Remote Sensing Image","volume":"60","author":"Yan","year":"2022","journal-title":"IEEE Trans. Geosci. Remote. Sens."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"6647","DOI":"10.1109\/TVT.2022.3162044","article-title":"Reconfigurable intelligent surface-assisted secure mobile edge computing networks","volume":"71","author":"Mao","year":"2022","journal-title":"IEEE Trans. Veh. Technol."},{"key":"ref_6","doi-asserted-by":"crossref","unstructured":"Messoussi, O., de Magalh\u00e3es, F.G., Lamarre, F., Perreault, F., Sogoba, I., Bilodeau, G.A., and Nicolescu, G. (2021). Vehicle Detection and Tracking from Surveillance Cameras in Urban Scenes. International Symposium on Visual Computing, Springer.","DOI":"10.1007\/978-3-030-90436-4_15"},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"7369","DOI":"10.1109\/TII.2020.2976053","article-title":"Traffic Network Flow Prediction Using Parallel Training for Deep Convolutional Neural Networks on Spark Cloud","volume":"16","author":"Zhang","year":"2020","journal-title":"IEEE Trans. Ind. Inf."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"4503905","DOI":"10.1109\/LGRS.2021.3139605","article-title":"Vehicle Detection Based on Semantic-Context Enhancement for High-Resolution SAR Images in Complex Background","volume":"19","author":"Zou","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"296","DOI":"10.1016\/j.isprsjprs.2019.11.023","article-title":"Object detection in optical remote sensing images: A survey and a new benchmark","volume":"159","author":"Li","year":"2020","journal-title":"ISPRS J. Photogramm. Remote Sens."},{"key":"ref_10","first-page":"5610113","article-title":"Multipatch Feature Pyramid Network for Weakly Supervised Object Detection in Optical Remote Sensing Images","volume":"60","author":"Shamsolmoali","year":"2022","journal-title":"IEEE Trans. Geosci. Remote Sens."},{"key":"ref_11","doi-asserted-by":"crossref","unstructured":"Liu, L., Zhao, M., Yu, M., Jan, M.A., Lan, D., and Taherkordi, A. (2022). Mobility-aware multi-hop task offloading for autonomous driving in vehicular edge computing and networks. IEEE Trans. Intell. Transp. Syst.","DOI":"10.1109\/TITS.2022.3142566"},{"key":"ref_12","doi-asserted-by":"crossref","unstructured":"Dai, Y., Yu, J., Zhang, D., Hu, T., and Zheng, X. (2022). RODFormer: High-Precision Design for Rotating Object Detection with Transformers. Sensors, 22.","DOI":"10.3390\/s22072633"},{"key":"ref_13","doi-asserted-by":"crossref","unstructured":"Xu, W., Huang, H., and Pan, S. (2021, January 19\u201322). Using feature alignment can improve clean average precision and adversarial robustness in object detection. Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA.","DOI":"10.1109\/ICIP42928.2021.9506689"},{"key":"ref_14","doi-asserted-by":"crossref","unstructured":"Chai, W., Lu, Y., and Velipasalar, S. (2021, January 19\u201322). Weighted average precision: Adversarial example detection for visual perception of autonomous vehicles. Proceedings of the 2021 IEEE International Conference on Image Processing (ICIP), Anchorage, AK, USA.","DOI":"10.1109\/ICIP42928.2021.9506613"},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"5564448","DOI":"10.1155\/2021\/5564448","article-title":"Stability Precision Error Correction of Photoelectric Detection by Unmanned Aerial Vehicle","volume":"2021","author":"Hong","year":"2021","journal-title":"J. Sens."},{"key":"ref_16","doi-asserted-by":"crossref","first-page":"450","DOI":"10.1109\/TIV.2020.3037928","article-title":"Real-Time Adaptive Object Detection and Tracking for Autonomous Vehicles","volume":"6","author":"Hoffmann","year":"2021","journal-title":"IEEE Trans. Intell. Veh."},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"318","DOI":"10.1109\/TPAMI.2018.2858826","article-title":"Focal Loss for Dense Object Detection","volume":"42","author":"Lin","year":"2020","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_18","unstructured":"Zhao, Q., Wang, Y., Sheng, T., and Tang, Z. (2018, January 2\u20136). Comprehensive Feature Enhancement Module for Single-Shot Object Detector. Proceedings of the 14th Asian Conference on Computer Vision, Perth, Australia."},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"642","DOI":"10.1007\/s11263-019-01204-1","article-title":"CornerNet: Detecting Objects as Paired Keypoints","volume":"128","author":"Law","year":"2020","journal-title":"Int. J. Comput. Vis."},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Redmon, J., Divvala, S., Girshick, R., and Farhadi, A. (2016, January 27\u201330). You Only Look Once: Unified, Real-Time Object Detection. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA.","DOI":"10.1109\/CVPR.2016.91"},{"key":"ref_21","doi-asserted-by":"crossref","unstructured":"Liu, W., Anguelov, D., Erhan, D., Szegedy, C., Reed, S., Fu, C.Y., and Berg, A.C. (2016, January 11\u201314). SSD: Single Shot MultiBox Detector. Proceedings of the 14th European Conference, Amsterdam, The Netherlands.","DOI":"10.1007\/978-3-319-46448-0_2"},{"key":"ref_22","doi-asserted-by":"crossref","unstructured":"Cai, Z., and Vasconcelos, N. (2018, January 18\u201323). Cascade R-CNN: Delving Into High Quality Object Detection. Proceedings of the 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.","DOI":"10.1109\/CVPR.2018.00644"},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"1137","DOI":"10.1109\/TPAMI.2016.2577031","article-title":"Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks","volume":"39","author":"Ren","year":"2017","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_24","doi-asserted-by":"crossref","unstructured":"He, K., Gkioxari, G., Doll\u00e1r, P., and Girshick, R. (2017, January 22\u201329). Mask R-CNN. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy.","DOI":"10.1109\/ICCV.2017.322"},{"key":"ref_25","unstructured":"Dai, J., Li, Y., He, K., and Sun, J. (2016, January 5\u201310). R-FCN: Object Detection via Region-based Fully Convolutional Networks. Proceedings of the Advances in Neural Information Processing Systems 29 (NIPS 2016), Barcelona, Spain."},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"1904","DOI":"10.1109\/TPAMI.2015.2389824","article-title":"Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition","volume":"37","author":"He","year":"2015","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_27","doi-asserted-by":"crossref","unstructured":"Redmon, J., and Farhadi, A. (2017, January 21\u201326). YOLO9000: Better, Faster, Stronger. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA.","DOI":"10.1109\/CVPR.2017.690"},{"key":"ref_28","unstructured":"Redmon, J., and Farhadi, A. (2018). YOLOv3: An incremental improvement. arXiv."},{"key":"ref_29","unstructured":"Bochkovskiy, A., Wang, C., and Liao, H.M. (2020). YOLOv4: Optimal Speed and Accuracy of Object Detection. arXiv."},{"key":"ref_30","unstructured":"Jocher, G. (2022, March 04). YOLOv5-Master. Available online: https:\/\/github.com\/ultralytics\/yolov5."},{"key":"ref_31","doi-asserted-by":"crossref","unstructured":"Isaac-Medina, B.K.S., Poyser, M., Organisciak, D., Willcocks, C.G., Breckon, T.P., and Shum, H.P.H. (2021, January 11\u201317). Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark. Proceedings of the 2021 IEEE\/CVF International Conference on Computer Vision Workshops (ICCVW), Montreal, BC, Canada.","DOI":"10.1109\/ICCVW54120.2021.00142"},{"key":"ref_32","doi-asserted-by":"crossref","unstructured":"Bewley, A., Ge, Z., Ott, L., Ramos, F., and Upcroft, B. (2016, January 25\u201328). Simple online and realtime tracking. Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, AZ, USA.","DOI":"10.1109\/ICIP.2016.7533003"},{"key":"ref_33","doi-asserted-by":"crossref","unstructured":"Wojke, N., Bewley, A., and Paulus, D. (2017, January 17\u201320). Simple online and realtime tracking with a deep association metric. Proceedings of the 2017 IEEE International Conference on Image Processing (ICIP), Beijing, China.","DOI":"10.1109\/ICIP.2017.8296962"},{"key":"ref_34","doi-asserted-by":"crossref","unstructured":"Wang, Z., Zheng, L., Liu, Y., Li, Y., and Wang, S. (2020, January 23\u201328). Towards Real-Time Multi-Object Tracking. Proceedings of the 16th European Conference, Glasgow, UK.","DOI":"10.1007\/978-3-030-58621-8_7"},{"key":"ref_35","doi-asserted-by":"crossref","unstructured":"Lu, Z., Rathod, V., Votel, R., and Huang, J. (2020, January 13\u201319). RetinaTrack: Online Single Stage Joint Detection and Tracking. Proceedings of the 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA.","DOI":"10.1109\/CVPR42600.2020.01468"},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"6653","DOI":"10.1007\/s11042-021-11804-0","article-title":"Moving vehicle detection and tracking at roundabouts using deep learning with trajectory union","volume":"81","author":"Avar","year":"2022","journal-title":"Multimed. Tools. Appl."},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Yun, S., Han, D., Chun, S., Oh, S.J., Yoo, Y., and Choe, J. (November, January 27). CutMix: Regularization Strategy to Train Strong Classifiers with Localizable Features. Proceedings of the 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea.","DOI":"10.1109\/ICCV.2019.00612"},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"35","DOI":"10.1115\/1.3662552","article-title":"A New Approach to Linear Filtering and Prediction Problems","volume":"82","author":"Kalman","year":"1960","journal-title":"J. Basic Eng. (ASME)"},{"key":"ref_39","unstructured":"Liu, Y., Shao, Z., Teng, Y., and Hoffmann, N. (2021). NAM: Normalization-based Attention Module. arXiv."},{"key":"ref_40","unstructured":"Zheng, Z., Wang, P., Liu, W., Li, J., Ye, R., and Ren, D. (February, January 27). Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression. Proceedings of the AAAI Conference on Artificial Intelligence, Honolulu, HI, USA."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"102907","DOI":"10.1016\/j.cviu.2020.102907","article-title":"UA-DETRAC: A new benchmark and protocol for multi-object detection and tracking","volume":"193","author":"Wen","year":"2015","journal-title":"Comput. Vis. Image Underst."},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Tian, Z., Shen, C., Chen, H., and He, T. (November, January 27). FCOS: Fully Convolutional One-Stage Object Detection. Proceedings of the 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea.","DOI":"10.1109\/ICCV.2019.00972"},{"key":"ref_43","unstructured":"Zhou, X., Wang, D., and Kr\u00e4henb\u00fchl, P. (2019). Objects as Points. arXiv."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/2\/724\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2025,1,17]],"date-time":"2025-01-17T23:34:35Z","timestamp":1737156875000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/23\/2\/724"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2023,1,8]]},"references-count":43,"journal-issue":{"issue":"2","published-online":{"date-parts":[[2023,1]]}},"alternative-id":["s23020724"],"URL":"https:\/\/doi.org\/10.3390\/s23020724","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2023,1,8]]}}}