{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,8,17]],"date-time":"2024-08-17T05:49:41Z","timestamp":1723873781550},"reference-count":129,"publisher":"MDPI AG","issue":"22","license":[{"start":{"date-parts":[[2022,11,11]],"date-time":"2022-11-11T00:00:00Z","timestamp":1668124800000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"Shandong University Youth Innovation Supporting Program","award":["2019KJN020"]},{"name":"Taishan Scholar Engineering Construction Fund of Shandong Province of China","award":["tsqn201812066"]},{"name":"Natural Science Foundation of Shandong Province","award":["ZR2020MF086","ZR2022MF315"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"With the increasing demand for human-computer interaction and health monitoring, human behavior recognition with device-free patterns has attracted extensive attention. The fluctuations of the Wi-Fi signal caused by human actions in a Wi-Fi coverage area can be used to precisely identify the human skeleton and pose, which effectively overcomes the problems of the traditional solution. Although many promising results have been achieved, no survey summarizes the research progress. This paper aims to comprehensively investigate and analyze the latest applications of human behavior recognition based on channel state information (CSI) and the human skeleton. First, we review the human profile perception and skeleton recognition progress based on wireless perception technologies. Second, we summarize the general framework of precise pose recognition, including signal preprocessing methods, neural network models, and performance results. Then, we classify skeleton model generation methods into three categories and emphasize the crucial difference among these typical applications. Furthermore, we discuss two aspects, such as experimental scenarios and recognition targets. Finally, we conclude the paper by summarizing the issues in typical systems and the main research directions for the future.<\/jats:p>","DOI":"10.3390\/s22228738","type":"journal-article","created":{"date-parts":[[2022,11,14]],"date-time":"2022-11-14T09:30:52Z","timestamp":1668418252000},"page":"8738","source":"Crossref","is-referenced-by-count":5,"title":["Skeleton-Based Human Pose Recognition Using Channel State Information: A Survey"],"prefix":"10.3390","volume":"22","author":[{"given":"Zhengjie","family":"Wang","sequence":"first","affiliation":[{"name":"College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China"}]},{"given":"Mingjing","family":"Ma","sequence":"additional","affiliation":[{"name":"College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China"}]},{"given":"Xiaoxue","family":"Feng","sequence":"additional","affiliation":[{"name":"College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China"}]},{"given":"Xue","family":"Li","sequence":"additional","affiliation":[{"name":"College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China"}]},{"given":"Fei","family":"Liu","sequence":"additional","affiliation":[{"name":"College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China"}]},{"given":"Yinjing","family":"Guo","sequence":"additional","affiliation":[{"name":"College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China"}]},{"given":"Da","family":"Chen","sequence":"additional","affiliation":[{"name":"College of Electronic and Information Engineering, Shandong University of Science and Technology, Qingdao 266590, China"}]}],"member":"1968","published-online":{"date-parts":[[2022,11,11]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","unstructured":"Yu, Z., and Wang, Z. (2020). Human Behavior Analysis: Sensing and Understanding, Springer Nature Singapore Pte Ltd.","DOI":"10.1007\/978-981-15-2109-6"},{"key":"ref_2","doi-asserted-by":"crossref","first-page":"1629","DOI":"10.1109\/COMST.2019.2934489","article-title":"Wireless Sensing for Human Activity: A Survey","volume":"22","author":"Liu","year":"2020","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"4755","DOI":"10.1007\/s10462-021-10116-x","article-title":"Human activity recognition in artificial intelligence framework: A narrative review","volume":"55","author":"Gupta","year":"2022","journal-title":"Artif. Intell. Rev."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"2259","DOI":"10.1007\/s10462-020-09904-8","article-title":"A survey on video-based Human Action Recognition: Recent updates, datasets, challenges, and applications","volume":"54","author":"Pareek","year":"2021","journal-title":"Artif. Intell. Rev."},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"107561","DOI":"10.1016\/j.patcog.2020.107561","article-title":"Sensor-based and vision-based human activity recognition: A comprehensive survey","volume":"108","author":"Min","year":"2020","journal-title":"Pattern Recognit."},{"key":"ref_6","doi-asserted-by":"crossref","first-page":"161","DOI":"10.1145\/3369836","article-title":"LimbMotion: Decimeter-level Limb Tracking for Wearable-based Human-Computer Interaction","volume":"3","author":"Zhou","year":"2019","journal-title":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol."},{"key":"ref_7","doi-asserted-by":"crossref","first-page":"1321","DOI":"10.1109\/JSEN.2014.2370945","article-title":"Wearable Sensors for Human Activity Monitoring: A Review","volume":"15","author":"Mukhopadhyay","year":"2015","journal-title":"IEEE Sens. J."},{"key":"ref_8","doi-asserted-by":"crossref","first-page":"3","DOI":"10.1016\/j.patrec.2018.02.010","article-title":"Deep learning for sensor-based activity recognition: A survey","volume":"119","author":"Wang","year":"2019","journal-title":"Pattern Recognit. Lett."},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"132","DOI":"10.1109\/MNET.2017.1700133","article-title":"Device-Free Wireless Sensing: Challenges, Opportunities, and Applications","volume":"32","author":"Wang","year":"2018","journal-title":"IEEE Netw."},{"key":"ref_10","doi-asserted-by":"crossref","first-page":"2517","DOI":"10.1109\/JIOT.2020.3024234","article-title":"Device-Free Wireless Sensing for Human Detection: The Deep Learning Perspective","volume":"8","author":"Zhang","year":"2021","journal-title":"IEEE Internet Things J."},{"key":"ref_11","first-page":"9329","article-title":"Device-Free User Authentication, Activity Classification and Tracking Using Passive Wi-Fi Sensing: A Deep Learning-Based Approach","volume":"20","author":"Jayasundara","year":"2020","journal-title":"IEEE Sens. J."},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"102738","DOI":"10.1016\/j.jnca.2020.102738","article-title":"A review and categorization of techniques on device-free human activity recognition","volume":"167","author":"Hussain","year":"2020","journal-title":"J. Netw. Comput. Appl."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"103281","DOI":"10.1016\/j.engappai.2019.103281","article-title":"Device free human gesture recognition using Wi-Fi CSI: A survey","volume":"87","author":"Ahmad","year":"2020","journal-title":"Eng. Appl. Artif. Intell."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"75","DOI":"10.1145\/2534169.2486039","article-title":"See through walls with WiFi!","volume":"43","author":"Adib","year":"2013","journal-title":"SIGCOMM Comput. Commun. Rev."},{"key":"ref_15","doi-asserted-by":"crossref","first-page":"363","DOI":"10.1109\/JIOT.2016.2563399","article-title":"Radios as Sensors","volume":"4","author":"Cianca","year":"2017","journal-title":"IEEE Internet Things J."},{"key":"ref_16","doi-asserted-by":"crossref","unstructured":"Tan, S., and Yang, J. (2022). Commodity Wi-Fi Sensing in 10 Years: Current Status, Challenges, and Opportunities. IEEE Internet Things J.","DOI":"10.1109\/JIOT.2022.3164569"},{"key":"ref_17","doi-asserted-by":"crossref","unstructured":"Zheng, T., Chen, Z., Luo, J., Ke, L., Zhao, C., and Yang, Y. (2021, January 25\u201329). SiWa: See into walls via deep UWB radar. Proceedings of the 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), New Orleans, LA, USA.","DOI":"10.1145\/3447993.3483258"},{"key":"ref_18","doi-asserted-by":"crossref","unstructured":"Yamada, H., and Horiuchi, T. (2020, January 26\u201328). High-resolution Indoor Human detection by Using Millimeter-Wave MIMO Radar. Proceedings of the 2020 International Workshop on Electromagnetics: Applications and Student Innovation Competition (iWEM), Makung, Taiwan.","DOI":"10.1109\/iWEM49354.2020.9237397"},{"key":"ref_19","doi-asserted-by":"crossref","unstructured":"Nam, D.V., and Gon-Woo, K. (2021, January 17\u201320). Solid-State LiDAR based-SLAM: A Concise Review and Application. Proceedings of the 2021 IEEE International Conference on Big Data and Smart Computing (BigComp), Jeju Island, Korea.","DOI":"10.1109\/BigComp51126.2021.00064"},{"key":"ref_20","doi-asserted-by":"crossref","unstructured":"Guan, J., Madani, S., Jog, S., Gupta, S., and Hassanieh, H. (2020, January 13\u201319). Through Fog High-Resolution Imaging Using Millimeter Wave Radar. Proceedings of the 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual.","DOI":"10.1109\/CVPR42600.2020.01148"},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1109\/MCOM.001.2000288","article-title":"Enhancing RF Sensing with Deep Learning: A Layered Approach","volume":"59","author":"Zheng","year":"2021","journal-title":"IEEE Commun. Mag."},{"key":"ref_22","unstructured":"Haseeb, M., and Parasuraman, R. (2017). Wisture: RNN-based Learning of Wireless Signals for Gesture Recognition in Unmodified Smartphones. arXiv."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"6258","DOI":"10.1109\/TVT.2016.2635161","article-title":"Device-Free Wireless Localization and Activity Recognition: A Deep Learning Approach","volume":"66","author":"Wang","year":"2017","journal-title":"IEEE Trans. Veh. Technol."},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"25","DOI":"10.1145\/2543581.2543592","article-title":"From RSSI to CSI: Indoor Localization via Channel Response","volume":"46","author":"Yang","year":"2013","journal-title":"ACM Comput. Surv."},{"key":"ref_25","doi-asserted-by":"crossref","unstructured":"Li, W., Bocus, M.J., Tang, C., Vishwakarma, S., Piechocki, R.J., Woodbridge, K., and Chetty, K. (2020, January 7\u201311). A Taxonomy of WiFi Sensing: CSI vs Passive WiFi Radar. Proceedings of the IEEE Global Communications Conference (GlobeCom), Taipei, Taiwan.","DOI":"10.1109\/GCWkshps50303.2020.9367546"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"28919","DOI":"10.1007\/s11042-021-11058-w","article-title":"Combining skeleton and accelerometer data for human fine-grained activity recognition and abnormal behaviour detection with deep temporal convolutional networks","volume":"80","author":"Pham","year":"2021","journal-title":"Multimed. Tools Appl."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"2186","DOI":"10.1109\/TMC.2020.2975158","article-title":"GaitWay: Monitoring and Recognizing Gait Speed Through the Walls","volume":"20","author":"Wu","year":"2021","journal-title":"IEEE Trans. Mob. Comput."},{"key":"ref_28","first-page":"71","article-title":"A Survey on Device-free Indoor Localization and Tracking in the Multi-resident Environment","volume":"53","author":"Ngamakeur","year":"2020","journal-title":"ACM Comput. Surv."},{"key":"ref_29","doi-asserted-by":"crossref","first-page":"250","DOI":"10.23919\/JCC.2019.09.019","article-title":"Convolutional neural networks based indoor Wi-Fi localization with a novel kind of CSI images","volume":"16","author":"Li","year":"2019","journal-title":"China Commun."},{"key":"ref_30","doi-asserted-by":"crossref","unstructured":"Wang, F., Zhang, F., Wu, C., Wang, B., and Liu, K.J.R. (2020, January 4\u20138). ViMo: Vital Sign Monitoring Using Commodity Millimeter Wave Radio. Proceedings of the ICASSP 2020\u20132020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain.","DOI":"10.1109\/ICASSP40776.2020.9054152"},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1109\/TMC.2019.2939791","article-title":"SMARS: Sleep Monitoring via Ambient Radio Signals","volume":"20","author":"Zhang","year":"2021","journal-title":"IEEE Trans. Mob. Comput."},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"121","DOI":"10.1145\/3351279","article-title":"FarSense: Pushing the Range Limit of WiFi-Based Respiration Sensing with CSI Ratio of Two Antennas","volume":"3","author":"Zeng","year":"2019","journal-title":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol."},{"key":"ref_33","unstructured":"Guo, L., Lu, Z., Zhou, S., Wen, X., and He, Z. (2020). When Healthcare Meets Off-the-Shelf WiFi: A Non-Wearable and Low-Costs Approach for In-Home Monitoring. arXiv."},{"key":"ref_34","first-page":"32","article-title":"Deep AI Enabled Ubiquitous Wireless Sensing: A Survey","volume":"54","author":"Li","year":"2021","journal-title":"ACM Comput. Surv."},{"key":"ref_35","unstructured":"Ren, B., Liu, M., Ding, R., and Liu, H. (2020). A Survey on 3D Skeleton-Based Action Recognition Using Learning Method. arXiv."},{"key":"ref_36","doi-asserted-by":"crossref","unstructured":"Kanazawa, A., Black, M.J., Jacobs, D.W., and Malik, J. (2018, January 18\u201323). End-to-End Recovery of Human Shape and Pose. Proceedings of the 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.","DOI":"10.1109\/CVPR.2018.00744"},{"key":"ref_37","doi-asserted-by":"crossref","unstructured":"Zhao, M., Liu, Y., Raghu, A., Zhao, H., Li, T., Torralba, A., and Katabi, D. (November, January 27). Through-Wall Human Mesh Recovery Using Radio Signals. Proceedings of the 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), Seoul, Korea.","DOI":"10.1109\/ICCV.2019.01021"},{"key":"ref_38","doi-asserted-by":"crossref","unstructured":"Isogawa, M., Yuan, Y., Toole, M.O., and Kitani, K. (2020, January 13\u201319). Optical Non-Line-of-Sight Physics-Based 3D Human Pose Estimation. Proceedings of the 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual.","DOI":"10.1109\/CVPR42600.2020.00704"},{"key":"ref_39","unstructured":"Ruget, A., Tyler, M., Mora-Mart\u00edn, G., Scholes, S., Zhu, F., Gy\u00f6ngy, I., Hearn, B., Mclaughlin, S., Halimi, A., and Leach, J. (2021). Real-time, low-cost multi-person 3D pose estimation. arXiv."},{"key":"ref_40","unstructured":"Kotaru, M., Satat, G., Raskar, R., and Katti, S. (2019). Light-Field for RF. arXiv."},{"key":"ref_41","doi-asserted-by":"crossref","first-page":"47154","DOI":"10.1109\/ACCESS.2021.3066158","article-title":"CSI2Image: Image Reconstruction from Channel State Information Using Generative Adversarial Networks","volume":"9","author":"Kato","year":"2021","journal-title":"IEEE Access"},{"key":"ref_42","doi-asserted-by":"crossref","unstructured":"Zhong, W., He, K., and Li, L. (2019). Through-the-Wall Imaging Exploiting 2.4 GHz Commodity Wi-Fi. arXiv.","DOI":"10.1049\/joe.2019.0544"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"11463","DOI":"10.1109\/JSEN.2020.2996078","article-title":"Wi2Vi: Generating Video Frames from WiFi CSI Samples","volume":"20","author":"Kefayati","year":"2020","journal-title":"IEEE Sens. J."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"219","DOI":"10.1145\/2816795.2818072","article-title":"Capturing the human figure through a wall","volume":"34","author":"Adib","year":"2015","journal-title":"ACM Trans. Graph."},{"key":"ref_45","doi-asserted-by":"crossref","unstructured":"Hsu, C.-Y., Hristov, R., Lee, G.-H., Zhao, M., and Katabi, D. (2019, January 4\u20139). Enabling Identification and Behavioral Sensing in Homes using Radio Reflections. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, UK.","DOI":"10.1145\/3290605.3300778"},{"key":"ref_46","unstructured":"Yu, C., Wu, Z., Zhang, D., Lu, Z., Hu, Y., and Chen, Y. (2021). RFGAN: RF-Based Human Synthesis. arXiv."},{"key":"ref_47","first-page":"1","article-title":"Human Posture Reconstruction for through-the-Wall Radar Imaging Using Convolutional Neural Networks","volume":"19","author":"Zheng","year":"2022","journal-title":"IEEE Geosci. Remote Sens. Lett."},{"key":"ref_48","doi-asserted-by":"crossref","unstructured":"Wang, F., Zhou, S., Panev, S., Han, J., and Huang, D. (November, January 27). Person-in-WiFi: Fine-Grained Person Perception Using WiFi. Proceedings of the 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), Seoul, Korea.","DOI":"10.1109\/ICCV.2019.00555"},{"key":"ref_49","unstructured":"Wang, F., Panev, S., Ziyi, D., Han, J., and Huang, D. (2019). Can WiFi Estimate Person Pose?. arXiv."},{"key":"ref_50","doi-asserted-by":"crossref","unstructured":"Li, C., Liu, Z., Yao, Y., Cao, Z., Zhang, M., and Liu, Y. (2020, January 16\u201319). Wi-fi see it all: Generative adversarial network-augmented versatile wi-fi imaging. Proceedings of the 18th Conference on Embedded Networked Sensor Systems, Virtual Event.","DOI":"10.1145\/3384419.3430725"},{"key":"ref_51","doi-asserted-by":"crossref","unstructured":"Jiang, W., Xue, H., Miao, C., Wang, S., Lin, S., Tian, C., Murali, S., Hu, H., Sun, Z., and Su, L. (2020, January 21\u201325). Towards 3D human pose construction using wifi. Proceedings of the 26th Annual International Conference on Mobile Computing and Networking, London, UK.","DOI":"10.1145\/3372224.3380900"},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"2235","DOI":"10.1109\/LCOMM.2021.3073271","article-title":"From Point to Space: 3D Moving Human Pose Estimation Using Commodity WiFi","volume":"25","author":"Wang","year":"2020","journal-title":"IEEE Commun. Lett."},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"802","DOI":"10.1109\/LCOMM.2019.2961890","article-title":"From Signal to Image: Capturing Fine-Grained Human Poses with Commodity Wi-Fi","volume":"24","author":"Guo","year":"2020","journal-title":"IEEE Commun. Lett."},{"key":"ref_54","doi-asserted-by":"crossref","unstructured":"Zhou, S., Guo, L., Lu, Z., Wen, X., Zheng, W., and Wang, Y. (2021, January 14\u201323). Subject-independent Human Pose Image Construction with Commodity Wi-Fi. Proceedings of the ICC 2021\u2014IEEE International Conference on Communications, Montreal, QC, Canada.","DOI":"10.1109\/ICC42927.2021.9500994"},{"key":"ref_55","doi-asserted-by":"crossref","unstructured":"Avola, D., Cascio, M., Cinque, L., Fagioli, A., and Foresti, G.L. (2022). Human Silhouette and Skeleton Video Synthesis through Wi-Fi signals. arXiv.","DOI":"10.1142\/S0129065722500150"},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"413","DOI":"10.1109\/JRFID.2022.3140256","article-title":"Environment Adaptive RFID based 3D Human Pose Tracking with a Meta-learning Approach","volume":"6","author":"Yang","year":"2022","journal-title":"IEEE J. Radio Freq. Identif."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1145\/3310194","article-title":"WiFi Sensing with Channel State Information: A Survey","volume":"52","author":"Ma","year":"2019","journal-title":"ACM Comput. Surv."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"155986","DOI":"10.1109\/ACCESS.2019.2949123","article-title":"A Survey on Human Behavior Recognition Using Channel State Information","volume":"7","author":"Wang","year":"2019","journal-title":"IEEE Access"},{"key":"ref_59","doi-asserted-by":"crossref","unstructured":"Al-qaness, M.A.A., Abd Elaziz, M., Kim, S., Ewees, A.A., Abbasi, A.A., Alhaj, Y.A., and Hawbani, A. (2019). Channel State Information from Pure Communication to Sense and Track Human Motion: A Survey. Sensors, 19.","DOI":"10.3390\/s19153329"},{"key":"ref_60","unstructured":"Zheng, C., Wu, W., Yang, T., Zhu, S., Chen, C., Liu, R., Shen, J., Kehtarnavaz, N., and Shah, M. (2020). Deep Learning-Based Human Pose Estimation: A Survey. arXiv."},{"key":"ref_61","doi-asserted-by":"crossref","unstructured":"Yang, Z., Qian, K., Wu, C., and Zhang, Y. (2021). Smart Wireless Sensing\u2014From IoT to AIoT, Springer.","DOI":"10.1007\/978-981-16-5658-3"},{"key":"ref_62","doi-asserted-by":"crossref","first-page":"31801","DOI":"10.1109\/ACCESS.2019.2902859","article-title":"Near-Field MIMO-SAR Millimeter-Wave Imaging with Sparsely Sampled Aperture Data","volume":"7","author":"Yanik","year":"2019","journal-title":"IEEE Access"},{"key":"ref_63","doi-asserted-by":"crossref","unstructured":"Li, T., Fan, L., Yuan, Y., and Katabi, D. (2022, January 3\u20138). Unsupervised Learning for Human Sensing Using Radio Signals. Proceedings of the 2022 IEEE\/CVF Winter Conference on Applications of Computer Vision (WACV), Waikoloa, HI, USA.","DOI":"10.1109\/WACV51458.2022.00116"},{"key":"ref_64","doi-asserted-by":"crossref","unstructured":"Wu, Z., Zhang, D., Xie, C., Yu, C., Chen, J., Hu, Y., and Chen, Y. (2022). RFMask: A Simple Baseline for Human Silhouette Segmentation with Radio Signals. IEEE Trans. Multimed., 1\u201312.","DOI":"10.1109\/TMM.2022.3181455"},{"key":"ref_65","doi-asserted-by":"crossref","unstructured":"Guo, H., Zhang, N., Shi, W., Ali-Alqarni, S., and Wang, H. (2019, January 8\u201312). Real-Time Indoor 3D Human Imaging Based on MIMO Radar Sensing. Proceedings of the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China.","DOI":"10.1109\/ICME.2019.00244"},{"key":"ref_66","doi-asserted-by":"crossref","unstructured":"Meng, K., and Meng, Y. (2019, January 16\u201319). Through-Wall Pose Imaging in Real-Time with a Many-to-Many Encoder\/Decoder Paradigm. Proceedings of the 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA), Boca Raton, FL, USA.","DOI":"10.1109\/ICMLA.2019.00012"},{"key":"ref_67","doi-asserted-by":"crossref","unstructured":"Zhao, M., Li, T., Alsheikh, M.A., Tian, Y., Zhao, H., Torralba, A., and Katabi, D. (2018, January 18\u201323). Through-Wall Human Pose Estimation Using Radio Signals. Proceedings of the 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.","DOI":"10.1109\/CVPR.2018.00768"},{"key":"ref_68","doi-asserted-by":"crossref","unstructured":"Zhao, M., Tian, Y., Zhao, H., Alsheikh, M.A., Li, T., Hristov, R., Kabelac, Z., Katabi, D., and Torralba, A. (2018, January 20\u201325). RF-based 3D skeletons. Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, Budapest, Hungary.","DOI":"10.1145\/3230543.3230579"},{"key":"ref_69","doi-asserted-by":"crossref","unstructured":"Li, T., Fan, L., Zhao, M., Liu, Y., and Katabi, D. (November, January 27). Making the Invisible Visible: Action Recognition Through Walls and Occlusions. Proceedings of the 2019 IEEE\/CVF International Conference on Computer Vision (ICCV), Seoul, Korea.","DOI":"10.1109\/ICCV.2019.00096"},{"key":"ref_70","doi-asserted-by":"crossref","first-page":"451","DOI":"10.1016\/j.neucom.2018.11.109","article-title":"Segmented convolutional gated recurrent neural networks for human activity recognition in ultra-wideband radar","volume":"396","author":"Du","year":"2020","journal-title":"Neurocomputing"},{"key":"ref_71","unstructured":"Sengupta, A., and Cao, S. (2022). mmPose-NLP: A Natural Language Processing Approach to Precise Skeletal Pose Estimation Using mmWave Radars. IEEE Trans. Neural Netw. Learn. Syst., 1\u201312."},{"key":"ref_72","doi-asserted-by":"crossref","first-page":"23174","DOI":"10.1109\/JSEN.2021.3107361","article-title":"Radar-Based 3D Human Skeleton Estimation by Kinematic Constrained Learning","volume":"21","author":"Ding","year":"2021","journal-title":"IEEE Sens. J."},{"key":"ref_73","unstructured":"Xue, H., Ju, Y., Miao, C., Wang, Y., Wang, S., Zhang, A., and Su, L. (July, January 24). mmMesh: Towards 3D real-time dynamic human mesh construction using millimeter-wave. Proceedings of the 19th Annual International Conference on Mobile Systems, Applications, and Services, Virtual Event."},{"key":"ref_74","doi-asserted-by":"crossref","first-page":"100228","DOI":"10.1016\/j.smhl.2021.100228","article-title":"mPose: Environment- and subject-agnostic 3D skeleton posture reconstruction leveraging a single mmWave device","volume":"23","author":"Shi","year":"2022","journal-title":"Smart Health"},{"key":"ref_75","doi-asserted-by":"crossref","unstructured":"F\u00fcrst, M., Gupta, S.T.P., Schuster, R., Wasenm\u00fcller, O., and Stricker, D. (2021, January 10\u201315). HPERL: 3D Human Pose Estimation from RGB and LiDAR. Proceedings of the 2020 25th International Conference on Pattern Recognition (ICPR), Milan, Italy.","DOI":"10.1109\/ICPR48806.2021.9412785"},{"key":"ref_76","doi-asserted-by":"crossref","first-page":"6995","DOI":"10.1109\/JIOT.2020.3037836","article-title":"mmEye: Super-Resolution Millimeter Wave Imaging","volume":"8","author":"Zhang","year":"2021","journal-title":"IEEE Internet Things J."},{"key":"ref_77","first-page":"176","article-title":"Winect: 3D Human Pose Tracking for Free-form Activity Using Commodity WiFi","volume":"5","author":"Ren","year":"2022","journal-title":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol."},{"key":"ref_78","unstructured":"(2009). Enhancements for Higher Throughput (Standard No. IEEE Std. 802.11n-2009)."},{"key":"ref_79","doi-asserted-by":"crossref","first-page":"53","DOI":"10.1145\/1925861.1925870","article-title":"Tool release: Gathering 802.11n traces with channel state information","volume":"41","author":"Halperin","year":"2011","journal-title":"SIGCOMM Comput. Commun. Rev."},{"key":"ref_80","doi-asserted-by":"crossref","unstructured":"Halperin, D., Hu, W., Sheth, A., and Wetherall, D. (September, January 30). Predictable 802.11 packet delivery from wireless channel measurements. Proceedings of the ACM SIGCOMM 2010 Conference, New Delhi, India.","DOI":"10.1145\/1851182.1851203"},{"key":"ref_81","doi-asserted-by":"crossref","first-page":"1342","DOI":"10.1109\/TMC.2018.2860991","article-title":"Precise Power Delay Profiling with Commodity Wi-Fi","volume":"18","author":"Xie","year":"2019","journal-title":"IEEE Trans. Mob. Comput."},{"key":"ref_82","doi-asserted-by":"crossref","unstructured":"Gringoli, F., Schulz, M., Link, J., and Hollick, M. (2019, January 25). Free Your CSI: A Channel State Information Extraction Platform for Modern Wi-Fi Chipsets. Proceedings of the 13th International Workshop on Wireless Network Testbeds, Experimental Evaluation & Characterization, Los Cabos, Mexico.","DOI":"10.1145\/3349623.3355477"},{"key":"ref_83","doi-asserted-by":"crossref","unstructured":"Hernandez, S.M., and Bulut, E. (September, January 31). Lightweight and Standalone IoT Based WiFi Sensing for Active Repositioning and Mobility. Proceedings of the 2020 IEEE 21st International Symposium on \u201cA World of Wireless, Mobile and Multimedia Networks\u201d (WoWMoM), Cork, Ireland.","DOI":"10.1109\/WoWMoM49955.2020.00056"},{"key":"ref_84","doi-asserted-by":"crossref","unstructured":"Ramacher, U., Raab, W., Hachmann, U., Langen, D., Berthold, J., Kramer, R., Schackow, A., Grassmann, C., Sauermann, M., and Szreder, P. (2011, January 15\u201318). Architecture and implementation of a Software-Defined Radio baseband processor. Proceedings of the 2011 IEEE International Symposium of Circuits and Systems (ISCAS), Rio de Janeiro, Brazil.","DOI":"10.1109\/ISCAS.2011.5938035"},{"key":"ref_85","doi-asserted-by":"crossref","first-page":"4","DOI":"10.1109\/MMUL.2012.24","article-title":"Microsoft Kinect Sensor and Its Effect","volume":"19","author":"Zhang","year":"2012","journal-title":"IEEE MultiMedia"},{"key":"ref_86","doi-asserted-by":"crossref","unstructured":"Cao, Z., Simon, T., Wei, S., and Sheikh, Y. (2017, January 21\u201326). Realtime Multi-person 2D Pose Estimation Using Part Affinity Fields. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA.","DOI":"10.1109\/CVPR.2017.143"},{"key":"ref_87","doi-asserted-by":"crossref","unstructured":"Fang, H., Xie, S., Tai, Y.-W., and Lu, C. (2017, January 22\u201329). RMPE: Regional Multi-person Pose Estimation. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy.","DOI":"10.1109\/ICCV.2017.256"},{"key":"ref_88","doi-asserted-by":"crossref","unstructured":"Huang, Y., Li, X., Wang, W., Jiang, T., and Zhang, Q. (2021, January 10\u201313). Towards Cross-Modal Forgery Detection and Localization on Live Surveillance Videos. Proceedings of the IEEE INFOCOM 2021\u2014IEEE Conference on Computer Communications, Vancouver, BC, Canada.","DOI":"10.1109\/INFOCOM42981.2021.9488798"},{"key":"ref_89","doi-asserted-by":"crossref","unstructured":"Ahad, M.A.R., Mahbub, U., and Rahman, T. (2021). Contactless Human Activity Analysis, Springer.","DOI":"10.1007\/978-3-030-68590-4"},{"key":"ref_90","doi-asserted-by":"crossref","first-page":"2224","DOI":"10.1109\/COMST.2019.2904897","article-title":"Deep Learning in Mobile and Wireless Networking: A Survey","volume":"21","author":"Zhang","year":"2019","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"ref_91","doi-asserted-by":"crossref","first-page":"58","DOI":"10.1145\/3448250","article-title":"Deep learning for AI","volume":"64","author":"Bengio","year":"2021","journal-title":"Commun. ACM"},{"key":"ref_92","doi-asserted-by":"crossref","first-page":"436","DOI":"10.1038\/nature14539","article-title":"Deep learning","volume":"521","author":"LeCun","year":"2015","journal-title":"Nature"},{"key":"ref_93","doi-asserted-by":"crossref","first-page":"5455","DOI":"10.1007\/s10462-020-09825-6","article-title":"A Survey of the Recent Architectures of Deep Convolutional Neural Networks","volume":"53","author":"Khan","year":"2019","journal-title":"Artif. Intell. Rev."},{"key":"ref_94","doi-asserted-by":"crossref","first-page":"995","DOI":"10.1109\/COMST.2021.3058333","article-title":"Deep Learning for Radio-Based Human Sensing: Recent Advances and Future Directions","volume":"23","author":"Nirmal","year":"2021","journal-title":"IEEE Commun. Surv. Tutor."},{"key":"ref_95","first-page":"45","article-title":"Neural Network Design using a Virtual Reality Platform","volume":"22","author":"Luigi","year":"2022","journal-title":"Glob. J. Comput. Sci. Technol."},{"key":"ref_96","doi-asserted-by":"crossref","first-page":"91","DOI":"10.1109\/MCOM.2017.1700143","article-title":"Device-Free WiFi Human Sensing: From Pattern-Based to Model-Based Approaches","volume":"55","author":"Wu","year":"2017","journal-title":"IEEE Commun. Mag."},{"key":"ref_97","doi-asserted-by":"crossref","first-page":"69","DOI":"10.1145\/3534605","article-title":"GoPose: 3D Human Pose Estimation Using WiFi","volume":"6","author":"Ren","year":"2022","journal-title":"Proc. ACM Interact. Mob. Wearable Ubiquitous Technol."},{"key":"ref_98","doi-asserted-by":"crossref","first-page":"1389","DOI":"10.1016\/j.sigpro.2005.02.010","article-title":"A time-frequency blind signal separation method applicable to underdetermined mixtures of dependent sources","volume":"85","author":"Abrard","year":"2005","journal-title":"Signal Process."},{"key":"ref_99","doi-asserted-by":"crossref","unstructured":"G\u00fcler, R.A., Neverova, N., and Kokkinos, I. (2018, January 18\u201323). DensePose: Dense Human Pose Estimation in the Wild. Proceedings of the 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.","DOI":"10.1109\/CVPR.2018.00762"},{"key":"ref_100","doi-asserted-by":"crossref","unstructured":"Feng, M., and Meunier, J. (2022). Skeleton Graph-Neural-Network-Based Human Action Recognition: A Survey. Sensors, 22.","DOI":"10.3390\/s22062091"},{"key":"ref_101","doi-asserted-by":"crossref","first-page":"4275","DOI":"10.1007\/s10462-021-10107-y","article-title":"A comparative review of graph convolutional networks for human skeleton-based action recognition","volume":"55","author":"Feng","year":"2021","journal-title":"Artif. Intell. Rev."},{"key":"ref_102","doi-asserted-by":"crossref","unstructured":"Zheng, C., Zhu, S., Mendieta, M., Yang, T., Chen, C., and Ding, Z. (2021, January 10\u201317). 3D Human Pose Estimation with Spatial and Temporal Transformers. Proceedings of the 2021 IEEE\/CVF International Conference on Computer Vision (ICCV), Montreal, QC, Canada.","DOI":"10.1109\/ICCV48922.2021.01145"},{"key":"ref_103","doi-asserted-by":"crossref","unstructured":"Han, K., Wang, Y., Chen, H., Chen, X., Guo, J., Liu, Z., Tang, Y., Xiao, A., Xu, C., and Xu, Y. (2022). A Survey on Vision Transformer. IEEE Trans. Pattern Anal. Mach. Intell., 1\u201313.","DOI":"10.1109\/TPAMI.2022.3152247"},{"key":"ref_104","doi-asserted-by":"crossref","first-page":"1544","DOI":"10.1007\/s10489-021-02517-w","article-title":"Mixed graph convolution and residual transformation network for skeleton-based action recognition","volume":"52","author":"Liu","year":"2022","journal-title":"Appl. Intell."},{"key":"ref_105","doi-asserted-by":"crossref","first-page":"2405","DOI":"10.1109\/TCSVT.2018.2864148","article-title":"Action Recognition with Spatio\u2013Temporal Visual Attention on Skeleton Image Sequences","volume":"29","author":"Yang","year":"2019","journal-title":"IEEE Trans. Circuits Syst. Video Technol."},{"key":"ref_106","doi-asserted-by":"crossref","unstructured":"Sekii, T. (2018, January 8\u201314). Pose Proposal Networks. Proceedings of the Computer Vision\u2014ECCV 2018, Munich, Germany.","DOI":"10.1007\/978-3-030-01261-8_21"},{"key":"ref_107","doi-asserted-by":"crossref","unstructured":"Chen, Y., Wang, Z., Peng, Y., Zhang, Z., Yu, G., and Sun, J. (2018, January 18\u201323). Cascaded Pyramid Network for Multi-Person Pose Estimation. Proceedings of the 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.","DOI":"10.1109\/CVPR.2018.00742"},{"key":"ref_108","doi-asserted-by":"crossref","unstructured":"Yan, S.J., Xiong, Y.J., and Lin, D.H. (2018, January 2\u20137). Spatial Temporal Graph Convolutional Networks for Skeleton-Based Action Recognition. Proceedings of the Thirty-Second Aaai Conference on Artificial Intelligence\/Thirtieth Innovative Applications of Artificial Intelligence Conference\/Eighth Aaai Symposium on Educational Advances in Artificial Intelligence, New Orleans, LA, USA.","DOI":"10.1609\/aaai.v32i1.12328"},{"key":"ref_109","doi-asserted-by":"crossref","unstructured":"Joo, H., Simon, T., and Sheikh, Y. (2018, January 18\u201323). Total Capture: A 3D Deformation Model for Tracking Faces, Hands, and Bodies. Proceedings of the 2018 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA.","DOI":"10.1109\/CVPR.2018.00868"},{"key":"ref_110","doi-asserted-by":"crossref","unstructured":"Sun, X., Shang, J., Liang, S., and Wei, Y. (2017, January 22\u201329). Compositional Human Pose Regression. Proceedings of the 2017 IEEE International Conference on Computer Vision (ICCV), Venice, Italy.","DOI":"10.1109\/ICCV.2017.284"},{"key":"ref_111","doi-asserted-by":"crossref","unstructured":"Shi, L., Zhang, Y., Cheng, J., and Lu, H. (2020, January 13\u201319). Skeleton-Based Action Recognition with Directed Graph Neural Networks. Proceedings of the 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition, Virtual.","DOI":"10.1109\/CVPR.2019.00810"},{"key":"ref_112","doi-asserted-by":"crossref","unstructured":"Li, M., Chen, S., Zhao, Y., Zhang, Y., Wang, Y., and Tian, Q. (2020, January 13\u201319). Dynamic Multiscale Graph Neural Networks for 3D Skeleton Based Human Motion Prediction. Proceedings of the 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual.","DOI":"10.1109\/CVPR42600.2020.00029"},{"key":"ref_113","doi-asserted-by":"crossref","first-page":"102897","DOI":"10.1016\/j.cviu.2019.102897","article-title":"Monocular human pose estimation: A survey of deep learning-based methods","volume":"192","author":"Chen","year":"2020","journal-title":"Comput. Vis. Image Underst."},{"key":"ref_114","doi-asserted-by":"crossref","unstructured":"Ke, Q., Bennamoun, M., An, S., Sohel, F., and Boussaid, F. (2017, January 21\u201326). A New Representation of Skeleton Sequences for 3D Action Recognition. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA.","DOI":"10.1109\/CVPR.2017.486"},{"key":"ref_115","doi-asserted-by":"crossref","first-page":"103055","DOI":"10.1016\/j.jvcir.2021.103055","article-title":"Human pose estimation and its application to action recognition: A survey","volume":"76","author":"Song","year":"2021","journal-title":"J. Vis. Commun. Image Represent."},{"key":"ref_116","doi-asserted-by":"crossref","unstructured":"Duan, H., Zhao, Y., Chen, K., Shao, D., Lin, D., and Dai, B. (2022). Revisiting Skeleton-based Action Recognition. arXiv.","DOI":"10.1109\/CVPR52688.2022.00298"},{"key":"ref_117","doi-asserted-by":"crossref","first-page":"1963","DOI":"10.1109\/TPAMI.2019.2896631","article-title":"View Adaptive Neural Networks for High Performance Skeleton-Based Human Action Recognition","volume":"41","author":"Zhang","year":"2019","journal-title":"IEEE Trans. Pattern Anal. Mach. Intell."},{"key":"ref_118","doi-asserted-by":"crossref","unstructured":"Shao, D., Zhao, Y., Dai, B., and Lin, D. (2020, January 13\u201319). FineGym: A Hierarchical Video Dataset for Fine-Grained Action Understanding. Proceedings of the 2020 IEEE\/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Virtual.","DOI":"10.1109\/CVPR42600.2020.00269"},{"key":"ref_119","doi-asserted-by":"crossref","unstructured":"Xu, J., Rao, Y., Yu, X., Chen, G., Zhou, J., and Lu, J. (2022). FineDiving: A Fine-grained Dataset for Procedure-aware Action Quality Assessment. arXiv.","DOI":"10.1109\/CVPR52688.2022.00296"},{"key":"ref_120","doi-asserted-by":"crossref","first-page":"7616","DOI":"10.1007\/s11227-021-04184-7","article-title":"Human pose, hand and mesh estimation using deep learning: A survey","volume":"78","author":"Toshpulatov","year":"2022","journal-title":"J. Supercomput."},{"key":"ref_121","doi-asserted-by":"crossref","unstructured":"Ge, Y., Taha, A., Shah, S.A., Dashtipour, K., Zhu, S., Cooper, J.M., Abbasi, Q., and Imran, M. (2022). Contactless WiFi Sensing and Monitoring for Future Healthcare\u2014Emerging Trends, Challenges and Opportunities. IEEE Rev. Biomed. Eng.","DOI":"10.1109\/RBME.2022.3156810"},{"key":"ref_122","doi-asserted-by":"crossref","unstructured":"Niu, X.P., Li, S.J., Zhang, Y., Liu, Z.P., Wu, D., Shah, R.C., Tanriover, C., Lu, H., and Zhang, D.Q. (2021). WiMonitor: Continuous Long-Term Human Vitality Monitoring Using Commodity Wi-Fi Devices. Sensors, 21.","DOI":"10.3390\/s21030751"},{"key":"ref_123","doi-asserted-by":"crossref","unstructured":"Cotton, R.J. (2022). PosePipe: Open-Source Human Pose Estimation Pipeline for Clinical Research. arXiv.","DOI":"10.1016\/j.apmr.2022.08.868"},{"key":"ref_124","doi-asserted-by":"crossref","unstructured":"Qiu, J., Yan, X., Wang, W., Wei, W., and Fang, K. (2021). Skeleton-Based Abnormal Behavior Detection Using Secure Partitioned Convolutional Neural Network Model. IEEE J. Biomed. Health Inform.","DOI":"10.1109\/JBHI.2021.3137334"},{"key":"ref_125","doi-asserted-by":"crossref","first-page":"108095","DOI":"10.1016\/j.patcog.2021.108095","article-title":"Skeleton-based human action evaluation using graph convolutional network for monitoring Alzheimer\u2019s progression","volume":"119","author":"Yu","year":"2021","journal-title":"Pattern Recognit."},{"key":"ref_126","doi-asserted-by":"crossref","first-page":"1423","DOI":"10.1109\/JSTSP.2021.3109429","article-title":"Emergency Semantic Feature Vector Extraction from WiFi Signals for In-Home Monitoring of Elderly","volume":"15","author":"Guo","year":"2021","journal-title":"IEEE J. Sel. Top. Signal Process."},{"key":"ref_127","doi-asserted-by":"crossref","unstructured":"Cormier, M., Clepe, A., Specker, A., and Beyerer, J. (2022, January 4\u20138). Where are we with Human Pose Estimation in Real-World Surveillance?. Proceedings of the 2022 IEEE\/CVF Winter Conference on Applications of Computer Vision Workshops (WACVW), Waikoloa, HI, USA.","DOI":"10.1109\/WACVW54805.2022.00065"},{"key":"ref_128","doi-asserted-by":"crossref","first-page":"2429","DOI":"10.1109\/TMC.2019.2924629","article-title":"Passive Crowd Speed Estimation in Adjacent Regions with Minimal WiFi Sensing","volume":"19","author":"Depatla","year":"2020","journal-title":"IEEE Trans. Mob. Comput."},{"key":"ref_129","unstructured":"Yu, S., Zhao, Z., Fang, H., Deng, A., Su, H., Wang, D., Gan, W., Lu, C., and Wu, W. (2021). Regularity Learning via Explicit Distribution Modeling for Skeletal Video Anomaly Detection. arXiv."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/22\/8738\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T10:27:34Z","timestamp":1723199254000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/22\/8738"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,11]]},"references-count":129,"journal-issue":{"issue":"22","published-online":{"date-parts":[[2022,11]]}},"alternative-id":["s22228738"],"URL":"https:\/\/doi.org\/10.3390\/s22228738","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2022,11,11]]}}}