{"status":"ok","message-type":"work","message-version":"1.0.0","message":{"indexed":{"date-parts":[[2024,10,6]],"date-time":"2024-10-06T01:14:33Z","timestamp":1728177273742},"reference-count":58,"publisher":"MDPI AG","issue":"21","license":[{"start":{"date-parts":[[2022,11,4]],"date-time":"2022-11-04T00:00:00Z","timestamp":1667520000000},"content-version":"vor","delay-in-days":0,"URL":"https:\/\/creativecommons.org\/licenses\/by\/4.0\/"}],"funder":[{"name":"National Institute on Health","award":["R01NR018301"]}],"content-domain":{"domain":[],"crossmark-restriction":false},"short-container-title":["Sensors"],"abstract":"Dry electrodes offer an accessible continuous acquisition of biopotential signals as part of current in-home monitoring systems but often face challenges of high-contact impedance that results in poor signal quality. The performance of dry electrodes could be affected by electrode material and skin hydration. Herein, we investigate these dependencies using a circuit skin-electrode interface model, varying material and hydration in controlled benchtop experiments on a biomimetic skin phantom simulating dry and hydrated skin. Results of the model demonstrate the contribution of the individual components in the circuit to total impedance and assist in understanding the role of electrode material in the mechanistic principle of dry electrodes. Validation was performed by conducting in vivo skin-electrode contact impedance measurements across ten normative human subjects. Further, the impact of the electrode on biopotential signal quality was evaluated by demonstrating an ability to capture clinically relevant electrocardiogram signals by using dry electrodes integrated into a toilet seat cardiovascular monitoring system. Titanium electrodes resulted in better signal quality than stainless steel electrodes. Results suggest that relative permittivity of native oxide of electrode material come into contact with the skin contributes to the interface impedance, and can lead to enhancement in the capacitive coupling of biopotential signals, especially in dry skin individuals.<\/jats:p>","DOI":"10.3390\/s22218510","type":"journal-article","created":{"date-parts":[[2022,11,7]],"date-time":"2022-11-07T08:02:22Z","timestamp":1667808142000},"page":"8510","source":"Crossref","is-referenced-by-count":18,"title":["Dependence of Skin-Electrode Contact Impedance on Material and Skin Hydration"],"prefix":"10.3390","volume":"22","author":[{"given":"Krittika","family":"Goyal","sequence":"first","affiliation":[{"name":"Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA"}]},{"given":"David A.","family":"Borkholder","sequence":"additional","affiliation":[{"name":"Department of Microsystems Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA"}]},{"ORCID":"http:\/\/orcid.org\/0000-0002-7211-6745","authenticated-orcid":false,"given":"Steven W.","family":"Day","sequence":"additional","affiliation":[{"name":"Department of Biomedical Engineering, Rochester Institute of Technology, Rochester, NY 14623, USA"}]}],"member":"1968","published-online":{"date-parts":[[2022,11,4]]},"reference":[{"key":"ref_1","doi-asserted-by":"crossref","first-page":"146","DOI":"10.1001\/jama.2018.8102","article-title":"Effect of a Home-Based Wearable Continuous ECG Monitoring Patch on Detection of Undiagnosed Atrial Fibrillation","volume":"320","author":"Steinhubl","year":"2018","journal-title":"JAMA"},{"doi-asserted-by":"crossref","unstructured":"Serhani, M.A., El Kassabi, H.T., Ismail, H., and Navaz, A.N. (2020). ECG Monitoring Systems: Review, Architecture, Processes, and Key Challenges. Sensors, 20.","key":"ref_2","DOI":"10.3390\/s20061796"},{"key":"ref_3","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1007\/BF02738534","article-title":"Historical evolution of circuit models for the electrode-electrolyte interface","volume":"25","author":"Geddes","year":"1997","journal-title":"Ann. Biomed. Eng."},{"key":"ref_4","doi-asserted-by":"crossref","first-page":"23758","DOI":"10.3390\/s141223758","article-title":"Soft, Comfortable Polymer Dry Electrodes for High Quality ECG and EEG Recording","volume":"14","author":"Chen","year":"2014","journal-title":"Sensors"},{"key":"ref_5","doi-asserted-by":"crossref","first-page":"332","DOI":"10.1007\/BF02344216","article-title":"Investigation into the origin of the noise of surface electrodes","volume":"40","author":"Huigen","year":"2002","journal-title":"Med. Biol. Eng. Comput."},{"doi-asserted-by":"crossref","unstructured":"Murphy, B., Scheid, B., Hendricks, Q., Apollo, N., Litt, B., and Vitale, F. (2021). Time Evolution of the Skin\u2013Electrode Interface Impedance under Different Skin Treatments. Sensors, 21.","key":"ref_6","DOI":"10.3390\/s21155210"},{"doi-asserted-by":"crossref","unstructured":"Macfarlane, P.W., van Oosterom, A., Pahlm, O., Kligfield, P., Janse, M., and Camm, J. (2010). ECG Instrumentation: Application and Design. Comprehensive Electrocardiology, Springer.","key":"ref_7","DOI":"10.1007\/978-1-84882-046-3"},{"unstructured":"Geddes, L.A., and Baker, L.E. (1989). Principles of Applied Biomedical Instrumentation, John Wiley & Sons. [3rd ed.].","key":"ref_8"},{"key":"ref_9","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1088\/0967-3334\/32\/1\/001","article-title":"Non-invasive bioimpedance of intact skin: Mathematical modeling and experiments","volume":"32","author":"Birgersson","year":"2010","journal-title":"Physiol. Meas."},{"unstructured":"Schmidt, R.N., Lisy, F.J., Skebe, G.G., and Prince, T.S. (2004). Dry Physiological Recording Electrode. (6,785,569), U.S. Patent.","key":"ref_10"},{"doi-asserted-by":"crossref","unstructured":"Albulbul, A. (2016). Evaluating Major Electrode Types for Idle Biological Signal Measurements for Modern Medical Technology. Bioengineering, 3.","key":"ref_11","DOI":"10.3390\/bioengineering3030020"},{"key":"ref_12","doi-asserted-by":"crossref","first-page":"9","DOI":"10.1016\/j.sbsr.2018.05.001","article-title":"Development of printed and flexible dry ECG electrodes","volume":"20","author":"Chlaihawi","year":"2018","journal-title":"Sens. Bio-Sens. Res."},{"key":"ref_13","doi-asserted-by":"crossref","first-page":"151","DOI":"10.1080\/00405000.2018.1508799","article-title":"Investigating the performance of dry textile electrodes for wearable end-uses","volume":"110","author":"An","year":"2018","journal-title":"J. Text. Inst."},{"key":"ref_14","doi-asserted-by":"crossref","first-page":"513","DOI":"10.1088\/0967-3334\/36\/3\/513","article-title":"Simultaneous comparison of 1 gel with 4 dry electrode types for electrocardiography","volume":"36","author":"Meziane","year":"2015","journal-title":"Physiol. Meas."},{"doi-asserted-by":"crossref","unstructured":"Anusha, A.S., Preejith, S.P., Akl, T.J., Joseph, J., and Sivaprakasam, M. (2018, January 11\u201313). Dry Electrode Optimization for Wrist-based Electrodermal Activity Monitoring. Proceedings of the 2018 IEEE International Symposium on Medical Measurements and Applications (MeMeA), Rome, Italy.","key":"ref_15","DOI":"10.1109\/MeMeA.2018.8438595"},{"doi-asserted-by":"crossref","unstructured":"Peng, S., Xu, K., and Chen, W. (2019). Comparison of Active Electrode Materials for Non-Contact ECG Measurement. Sensors, 19.","key":"ref_16","DOI":"10.3390\/s19163585"},{"key":"ref_17","doi-asserted-by":"crossref","first-page":"250","DOI":"10.1016\/j.snb.2018.08.155","article-title":"Towards conductive-gel-free electrodes: Understanding the wet electrode, semi-dry electrode and dry electrode-skin interface impedance using electrochemical impedance spectroscopy fitting","volume":"277","author":"Li","year":"2018","journal-title":"Sens. Actuators B Chem."},{"key":"ref_18","doi-asserted-by":"crossref","first-page":"e120","DOI":"10.2196\/mhealth.9604","article-title":"Nontraditional Electrocardiogram and Algorithms for Inconspicuous In-Home Monitoring: Comparative Study","volume":"6","author":"Conn","year":"2018","journal-title":"JMIR mHealth uHealth"},{"key":"ref_19","doi-asserted-by":"crossref","first-page":"113513","DOI":"10.1016\/j.sna.2022.113513","article-title":"A biomimetic skin phantom for characterizing wearable electrodes in the low-frequency regime","volume":"340","author":"Goyal","year":"2022","journal-title":"Sens. Actuators A Phys."},{"key":"ref_20","doi-asserted-by":"crossref","first-page":"108480","DOI":"10.1016\/j.corsci.2020.108480","article-title":"EIS comparative study and critical Equivalent Electrical Circuit (EEC) analysis of the native oxide layer of additive manufactured and wrought 316L stainless steel","volume":"167","author":"Revilla","year":"2020","journal-title":"Corros. Sci."},{"key":"ref_21","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1016\/0039-6028(71)90217-2","article-title":"Auger spectroscopy of titanium","volume":"24","author":"Bishop","year":"1971","journal-title":"Surf. Sci."},{"key":"ref_22","doi-asserted-by":"crossref","first-page":"1900","DOI":"10.1109\/TIM.2018.2806950","article-title":"Effect of Pressure on Skin-Electrode Impedance in Wearable Biomedical Measurement Devices","volume":"67","author":"Taji","year":"2018","journal-title":"IEEE Trans. Instrum. Meas."},{"key":"ref_23","doi-asserted-by":"crossref","first-page":"747","DOI":"10.5006\/1.3280607","article-title":"Technical Note: Concerning the Conversion of the Constant Phase Element Parameter Y0into a Capacitance","volume":"57","author":"Hsu","year":"2001","journal-title":"Corrosion"},{"key":"ref_24","doi-asserted-by":"crossref","first-page":"315","DOI":"10.1214\/aoms\/1177729380","article-title":"The \u03c72 Test of Goodness of Fit","volume":"23","author":"Cochran","year":"1952","journal-title":"Ann. Math. Stat."},{"unstructured":"(2022, September 06). Equivalent Circuit Modeling Using the Gamry Electrochemical Impedance Spectroscopy Software. Available online: https:\/\/www.gamry.com\/application-notes\/EIS\/equivalent-circuit-modeling-using-the-gamry-eis300-electrochemical-impedance-spectroscopy-software\/.","key":"ref_25"},{"key":"ref_26","doi-asserted-by":"crossref","first-page":"691","DOI":"10.1016\/j.jelectrocard.2016.07.002","article-title":"Impact of the high-frequency cutoff of bandpass filtering on ECG quality and clinical interpretation: A comparison between 40Hz and 150Hz cutoff in a surgical preoperative adult outpatient population","volume":"49","author":"Ricciardi","year":"2016","journal-title":"J. Electrocardiol."},{"key":"ref_27","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1007\/BF02478504","article-title":"Optimal QRS detector","volume":"21","author":"Thakor","year":"1983","journal-title":"Med. Biol. Eng. Comput."},{"key":"ref_28","doi-asserted-by":"crossref","first-page":"15","DOI":"10.1088\/0967-3334\/29\/1\/002","article-title":"Robust heart rate estimation from multiple asynchronous noisy sources using signal quality indices and a Kalman filter","volume":"29","author":"Li","year":"2007","journal-title":"Physiol. Meas."},{"doi-asserted-by":"crossref","unstructured":"Castro, I.D., Varon, C., Torfs, T., Van Huffel, S., Puers, R., and Van Hoof, C. (2018). Evaluation of a Multichannel Non-Contact ECG System and Signal Quality Algorithms for Sleep Apnea Detection and Monitoring. Sensors, 18.","key":"ref_29","DOI":"10.3390\/s18020577"},{"key":"ref_30","doi-asserted-by":"crossref","first-page":"70","DOI":"10.1109\/TAU.1967.1161901","article-title":"The use of fast Fourier transform for the estimation of power spectra: A method based on time averaging over short, modified periodograms","volume":"15","author":"Welch","year":"1967","journal-title":"IEEE Trans. Audio Electroacoust."},{"key":"ref_31","doi-asserted-by":"crossref","first-page":"1689","DOI":"10.3758\/s13428-020-01516-y","article-title":"NeuroKit2: A Python toolbox for neurophysiological signal processing","volume":"53","author":"Makowski","year":"2021","journal-title":"Behav. Res. Methods"},{"key":"ref_32","doi-asserted-by":"crossref","first-page":"463","DOI":"10.1109\/TBME.2016.2562702","article-title":"Skin-Potential Variation Insensitive Dry Electrodes for ECG Recording","volume":"64","author":"Pei","year":"2016","journal-title":"IEEE Trans. Biomed. Eng."},{"key":"ref_33","doi-asserted-by":"crossref","first-page":"105","DOI":"10.1007\/s00521-005-0013-y","article-title":"Application of independent component analysis in removing artefacts from the electrocardiogram","volume":"15","author":"He","year":"2005","journal-title":"Neural Comput. Appl."},{"unstructured":"Helmenstine, M. (2022, September 06). Table of Electrical Resistivity and Conductivity. Available online: https:\/\/www.thoughtco.com\/table-of-electrical-resistivity-conductivity-608499.","key":"ref_34"},{"key":"ref_35","doi-asserted-by":"crossref","first-page":"167","DOI":"10.1016\/0169-4332(87)90062-6","article-title":"On the oxide formation on stainless steels AISI 304 and incoloy 800H investigated with XPS","volume":"28","author":"Langevoort","year":"1987","journal-title":"Appl. Surf. Sci."},{"key":"ref_36","doi-asserted-by":"crossref","first-page":"343","DOI":"10.1016\/0368-2048(95)02530-8","article-title":"Surface spectroscopic characterization of titanium implant materials","volume":"81","author":"Lausmaa","year":"1996","journal-title":"J. Electron. Spectrosc. Relat. Phenom."},{"key":"ref_37","doi-asserted-by":"crossref","first-page":"1244","DOI":"10.1016\/j.snb.2016.10.005","article-title":"Towards gel-free electrodes: A systematic study of electrode-skin impedance","volume":"241","author":"Li","year":"2017","journal-title":"Sens. Actuators B Chem."},{"key":"ref_38","doi-asserted-by":"crossref","first-page":"2100352","DOI":"10.1002\/admi.202100352","article-title":"Capacitive Coupling of Conducting Polymer Tattoo Electrodes with the Skin","volume":"8","author":"Ferrari","year":"2021","journal-title":"Adv. Mater. Interfaces"},{"key":"ref_39","doi-asserted-by":"crossref","first-page":"2639","DOI":"10.1016\/j.bpj.2013.05.008","article-title":"Skin Membrane Electrical Impedance Properties under the Influence of a Varying Water Gradient","volume":"104","author":"Ruzgas","year":"2013","journal-title":"Biophys. J."},{"key":"ref_40","doi-asserted-by":"crossref","first-page":"2000325","DOI":"10.1002\/admt.202000325","article-title":"A Gel-Free Ti3C2Tx-Based Electrode Array for High-Density, High-Resolution Surface Electromyography","volume":"5","author":"Murphy","year":"2020","journal-title":"Adv. Mater. Technol."},{"unstructured":"(2019). Cutaneous Electrodes for Recording Purposes\u2014Performance Criteria for Safety and Performance Based Pathway (Standard No. FDA-2019-D-1649).","key":"ref_41"},{"key":"ref_42","first-page":"888","article-title":"The effects of electrode impedance on data quality and statistical significance in ERP recordings","volume":"47","author":"Kappenman","year":"2010","journal-title":"Psychophysiology"},{"key":"ref_43","doi-asserted-by":"crossref","first-page":"106","DOI":"10.1109\/RBME.2010.2084078","article-title":"Dry-Contact and Noncontact Biopotential Electrodes: Methodological Review","volume":"3","author":"Chi","year":"2010","journal-title":"IEEE Rev. Biomed. Eng."},{"key":"ref_44","doi-asserted-by":"crossref","first-page":"9677","DOI":"10.1021\/jp034874u","article-title":"Nanoscale Imaging of the Electronic Conductivity of the Native Oxide Film on Titanium Using Conducting Atomic Force Microscopy","volume":"107","author":"Boxley","year":"2003","journal-title":"J. Phys. Chem. B"},{"key":"ref_45","doi-asserted-by":"crossref","first-page":"1234","DOI":"10.1002\/adem.201400487","article-title":"Oxide Formation, Morphology, and Nanohardness of Laser-Patterned Steel Surfaces","volume":"17","author":"Rosenkranz","year":"2015","journal-title":"Adv. Eng. Mater."},{"unstructured":"Balanis, C.A. (2012). Advanced Engineerig Electromagnetics, John Wiley & Sons.","key":"ref_46"},{"key":"ref_47","first-page":"1","article-title":"Electronic Properties of TiO2 Nanoparticles Films and the Effect on Apatite-Forming Ability","volume":"2013","author":"Holmberg","year":"2013","journal-title":"Int. J. Dent."},{"key":"ref_48","doi-asserted-by":"crossref","first-page":"1312","DOI":"10.5006\/2967","article-title":"A Surface Study of the Native Oxide upon a Compositionally Complex Alloy","volume":"74","author":"Qiu","year":"2018","journal-title":"Corrosion"},{"key":"ref_49","doi-asserted-by":"crossref","first-page":"206","DOI":"10.1109\/TBME.1971.4502833","article-title":"Electrocardiogram Recording with Pasteless Electrodes","volume":"BME-18","author":"Bergey","year":"1971","journal-title":"IEEE Trans. Biomed. Eng."},{"doi-asserted-by":"crossref","unstructured":"Lopes, C., Fiedler, P., Rodrigues, M.S., Borges, J., Bertollo, M., Alves, E., Barradas, N.P., Comani, S., Haueisen, J., and Vaz, F. (2021). Me-Doped Ti\u2013Me Intermetallic Thin Films Used for Dry Biopotential Electrodes: A Comparative Case Study. Sensors, 21.","key":"ref_50","DOI":"10.3390\/s21238143"},{"key":"ref_51","doi-asserted-by":"crossref","first-page":"1","DOI":"10.1038\/s41528-020-0067-z","article-title":"Conducting polymer tattoo electrodes in clinical electro- and magneto-encephalography","volume":"4","author":"Ferrari","year":"2020","journal-title":"NPJ Flex. Electron."},{"key":"ref_52","doi-asserted-by":"crossref","first-page":"217","DOI":"10.1039\/C7LC00914C","article-title":"Wearable sensors: Modalities, challenges, and prospects","volume":"18","author":"Heikenfeld","year":"2018","journal-title":"Lab Chip"},{"key":"ref_53","doi-asserted-by":"crossref","first-page":"051004","DOI":"10.1088\/1741-2552\/abbd50","article-title":"Review of semi-dry electrodes for EEG recording","volume":"17","author":"Li","year":"2020","journal-title":"J. Neural Eng."},{"key":"ref_54","doi-asserted-by":"crossref","first-page":"1","DOI":"10.34133\/2022\/9830457","article-title":"Ten-Hour Stable Noninvasive Brain-Computer Interface Realized by Semidry Hydrogel-Based Electrodes","volume":"2022","author":"Liu","year":"2022","journal-title":"Research"},{"key":"ref_55","doi-asserted-by":"crossref","first-page":"046016","DOI":"10.1088\/1741-2552\/abeeab","article-title":"Towards real-life EEG applications: Novel superporous hydrogel-based semi-dry EEG electrodes enabling automatically \u2018charge\u2013discharge\u2019 electrolyte","volume":"18","author":"Li","year":"2021","journal-title":"J. Neural Eng."},{"key":"ref_56","doi-asserted-by":"crossref","first-page":"271","DOI":"10.1088\/0967-3334\/21\/2\/307","article-title":"A direct comparison of wet, dry and insulating bioelectric recording electrodes","volume":"21","author":"Searle","year":"2000","journal-title":"Physiol. Meas."},{"key":"ref_57","doi-asserted-by":"crossref","first-page":"G811","DOI":"10.1149\/1.2214532","article-title":"Interfacial and Electrokinetic Characterization of IPA Solutions Related to Semiconductor Wafer Drying and Cleaning","volume":"153","author":"Park","year":"2006","journal-title":"J. Electrochem. Soc."},{"key":"ref_58","doi-asserted-by":"crossref","first-page":"71","DOI":"10.1007\/BF02441608","article-title":"Characteristics of skin admittance for dry electrodes and the measurement of skin moisturisation","volume":"24","author":"Yamamoto","year":"1986","journal-title":"Med. Biol. Eng. Comput."}],"container-title":["Sensors"],"original-title":[],"language":"en","link":[{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/21\/8510\/pdf","content-type":"unspecified","content-version":"vor","intended-application":"similarity-checking"}],"deposited":{"date-parts":[[2024,8,9]],"date-time":"2024-08-09T01:16:10Z","timestamp":1723166170000},"score":1,"resource":{"primary":{"URL":"https:\/\/www.mdpi.com\/1424-8220\/22\/21\/8510"}},"subtitle":[],"short-title":[],"issued":{"date-parts":[[2022,11,4]]},"references-count":58,"journal-issue":{"issue":"21","published-online":{"date-parts":[[2022,11]]}},"alternative-id":["s22218510"],"URL":"https:\/\/doi.org\/10.3390\/s22218510","relation":{},"ISSN":["1424-8220"],"issn-type":[{"type":"electronic","value":"1424-8220"}],"subject":[],"published":{"date-parts":[[2022,11,4]]}}}